IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-022-35535-4.html
   My bibliography  Save this article

Decreased but diverse activity of cortical and thalamic neurons in consciousness-impairing rodent absence seizures

Author

Listed:
  • Cian McCafferty

    (Yale School of Medicine
    University College Cork)

  • Benjamin F. Gruenbaum

    (Yale School of Medicine)

  • Renee Tung

    (Yale School of Medicine)

  • Jing-Jing Li

    (Yale School of Medicine)

  • Xinyuan Zheng

    (Yale School of Medicine)

  • Peter Salvino

    (Yale School of Medicine)

  • Peter Vincent

    (Yale School of Medicine)

  • Zachary Kratochvil

    (Yale School of Medicine)

  • Jun Hwan Ryu

    (Yale School of Medicine)

  • Aya Khalaf

    (Yale School of Medicine)

  • Kohl Swift

    (Yale School of Medicine)

  • Rashid Akbari

    (Yale School of Medicine)

  • Wasif Islam

    (Yale School of Medicine)

  • Prince Antwi

    (Yale School of Medicine)

  • Emily A. Johnson

    (Yale School of Medicine)

  • Petr Vitkovskiy

    (Yale School of Medicine)

  • James Sampognaro

    (Yale School of Medicine)

  • Isaac G. Freedman

    (Yale School of Medicine)

  • Adam Kundishora

    (Yale School of Medicine)

  • Antoine Depaulis

    (Grenoble Institut Neurosciences)

  • François David

    (Cardiff University)

  • Vincenzo Crunelli

    (Cardiff University)

  • Basavaraju G. Sanganahalli

    (Yale University
    Yale University
    Yale University)

  • Peter Herman

    (Yale University
    Yale University
    Yale University)

  • Fahmeed Hyder

    (Yale University
    Yale University
    Yale University)

  • Hal Blumenfeld

    (Yale School of Medicine
    Yale University
    Yale School of Medicine
    Yale School of Medicine)

Abstract

Absence seizures are brief episodes of impaired consciousness, behavioral arrest, and unresponsiveness, with yet-unknown neuronal mechanisms. Here we report that an awake female rat model recapitulates the behavioral, electroencephalographic, and cortical functional magnetic resonance imaging characteristics of human absence seizures. Neuronally, seizures feature overall decreased but rhythmic firing of neurons in cortex and thalamus. Individual cortical and thalamic neurons express one of four distinct patterns of seizure-associated activity, one of which causes a transient initial peak in overall firing at seizure onset, and another which drives sustained decreases in overall firing. 40–60 s before seizure onset there begins a decline in low frequency electroencephalographic activity, neuronal firing, and behavior, but an increase in higher frequency electroencephalography and rhythmicity of neuronal firing. Our findings demonstrate that prolonged brain state changes precede consciousness-impairing seizures, and that during seizures distinct functional groups of cortical and thalamic neurons produce an overall transient firing increase followed by a sustained firing decrease, and increased rhythmicity.

Suggested Citation

  • Cian McCafferty & Benjamin F. Gruenbaum & Renee Tung & Jing-Jing Li & Xinyuan Zheng & Peter Salvino & Peter Vincent & Zachary Kratochvil & Jun Hwan Ryu & Aya Khalaf & Kohl Swift & Rashid Akbari & Wasi, 2023. "Decreased but diverse activity of cortical and thalamic neurons in consciousness-impairing rodent absence seizures," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35535-4
    DOI: 10.1038/s41467-022-35535-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35535-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35535-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nikos K. Logothetis & Jon Pauls & Mark Augath & Torsten Trinath & Axel Oeltermann, 2001. "Neurophysiological investigation of the basis of the fMRI signal," Nature, Nature, vol. 412(6843), pages 150-157, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea I. Luppi & Lynn Uhrig & Jordy Tasserie & Camilo M. Signorelli & Emmanuel A. Stamatakis & Alain Destexhe & Bechir Jarraya & Rodrigo Cofre, 2024. "Local orchestration of distributed functional patterns supporting loss and restoration of consciousness in the primate brain," Nature Communications, Nature, vol. 15(1), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zvi N. Roth & Kendrick Kay & Elisha P. Merriam, 2022. "Natural scene sampling reveals reliable coarse-scale orientation tuning in human V1," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Wan-Yu Shih & Hsiang-Yu Yu & Cheng-Chia Lee & Chien-Chen Chou & Chien Chen & Paul W. Glimcher & Shih-Wei Wu, 2023. "Electrophysiological population dynamics reveal context dependencies during decision making in human frontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    3. Amrita Pal & Jennifer A Ogren & Ravi S Aysola & Rajesh Kumar & Luke A Henderson & Ronald M Harper & Paul M Macey, 2021. "Insular functional organization during handgrip in females and males with obstructive sleep apnea," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-22, February.
    4. Olsen, Carmen & Gold, Anna, 2018. "Future research directions at the intersection between cognitive neuroscience research and auditors’ professional skepticism," Journal of Accounting Literature, Elsevier, vol. 41(C), pages 127-141.
    5. Ujwal Chaudhary & Bin Xia & Stefano Silvoni & Leonardo G Cohen & Niels Birbaumer, 2017. "Brain–Computer Interface–Based Communication in the Completely Locked-In State," PLOS Biology, Public Library of Science, vol. 15(1), pages 1-25, January.
    6. Chaogan Yan & Dongqiang Liu & Yong He & Qihong Zou & Chaozhe Zhu & Xinian Zuo & Xiangyu Long & Yufeng Zang, 2009. "Spontaneous Brain Activity in the Default Mode Network Is Sensitive to Different Resting-State Conditions with Limited Cognitive Load," PLOS ONE, Public Library of Science, vol. 4(5), pages 1-11, May.
    7. Laurens Winkelmeier & Carla Filosa & Renée Hartig & Max Scheller & Markus Sack & Jonathan R. Reinwald & Robert Becker & David Wolf & Martin Fungisai Gerchen & Alexander Sartorius & Andreas Meyer-Linde, 2022. "Striatal hub of dynamic and stabilized prediction coding in forebrain networks for olfactory reinforcement learning," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    8. Ani Eloyan & Shanshan Li & John Muschelli & Jim J Pekar & Stewart H Mostofsky & Brian S Caffo, 2014. "Analytic Programming with fMRI Data: A Quick-Start Guide for Statisticians Using R," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-13, February.
    9. Ai-Ling Hsu & Kun-Hsien Chou & Yi-Ping Chao & Hsin-Ya Fan & Changwei W Wu & Jyh-Horng Chen, 2016. "Physiological Contribution in Spontaneous Oscillations: An Approximate Quality-Assurance Index for Resting-State fMRI Signals," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-18, February.
    10. Kim, Sang-Yoon & Lim, Woochang, 2015. "Effect of small-world connectivity on fast sparsely synchronized cortical rhythms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 109-123.
    11. Adrián Ponce-Alvarez & Biyu J He & Patric Hagmann & Gustavo Deco, 2015. "Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-26, August.
    12. Yali Huang & Peng-Hu Wei & Longzhou Xu & Desheng Chen & Yanfeng Yang & Wenkai Song & Yangyang Yi & Xiaoli Jia & Guowei Wu & Qingchen Fan & Zaixu Cui & Guoguang Zhao, 2023. "Intracranial electrophysiological and structural basis of BOLD functional connectivity in human brain white matter," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Sam Efromovich & Zibonele Valdez-Jasso, 2010. "Aggregated wavelet estimation and its application to ultra-fast fMRI," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(7), pages 841-857.
    14. Fausto Caruana & Ivana Sartori & Giorgio Lo Russo & Pietro Avanzini, 2014. "Sequencing Biological and Physical Events Affects Specific Frequency Bands within the Human Premotor Cortex: An Intracerebral EEG Study," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-9, January.
    15. Elizabeth L. Johnson & Jack J. Lin & David King-Stephens & Peter B. Weber & Kenneth D. Laxer & Ignacio Saez & Fady Girgis & Mark D’Esposito & Robert T. Knight & David Badre, 2023. "A rapid theta network mechanism for flexible information encoding," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Pahor, Anja & Jaušovec, Norbert, 2017. "Multifaceted pattern of neural efficiency in working memory capacity," Intelligence, Elsevier, vol. 65(C), pages 23-34.
    17. Michael Seiler & Eric Walden, 2015. "A Neurological Explanation of Strategic Mortgage Default," The Journal of Real Estate Finance and Economics, Springer, vol. 51(2), pages 215-230, August.
    18. Pedro G. Vieira & Matthew R. Krause & Christopher C. Pack, 2024. "Temporal interference stimulation disrupts spike timing in the primate brain," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Doungmo Goufo, Emile F. & Mbehou, Mohamed & Kamga Pene, Morgan M., 2018. "A peculiar application of Atangana–Baleanu fractional derivative in neuroscience: Chaotic burst dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 170-176.
    20. Irene Neuner & Wolfram Kawohl & Jorge Arrubla & Tracy Warbrick & Konrad Hitz & Christine Wyss & Frank Boers & N Jon Shah, 2014. "Cortical Response Variation with Different Sound Pressure Levels: A Combined Event-Related Potentials and fMRI Study," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-14, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35535-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.