IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38790-1.html
   My bibliography  Save this article

Dynamic interplay between target search and recognition for a Type I CRISPR-Cas system

Author

Listed:
  • Pierre Aldag

    (Universität Leipzig)

  • Marius Rutkauskas

    (Universität Leipzig)

  • Julene Madariaga-Marcos

    (Universität Leipzig)

  • Inga Songailiene

    (Vilnius University)

  • Tomas Sinkunas

    (Vilnius University)

  • Felix Kemmerich

    (Universität Leipzig)

  • Dominik Kauert

    (Universität Leipzig)

  • Virginijus Siksnys

    (Vilnius University)

  • Ralf Seidel

    (Universität Leipzig)

Abstract

CRISPR-Cas effector complexes enable the defense against foreign nucleic acids and have recently been exploited as molecular tools for precise genome editing at a target locus. To bind and cleave their target, the CRISPR-Cas effectors have to interrogate the entire genome for the presence of a matching sequence. Here we dissect the target search and recognition process of the Type I CRISPR-Cas complex Cascade by simultaneously monitoring DNA binding and R-loop formation by the complex. We directly quantify the effect of DNA supercoiling on the target recognition probability and demonstrate that Cascade uses facilitated diffusion for its target search. We show that target search and target recognition are tightly linked and that DNA supercoiling and limited 1D diffusion need to be considered when understanding target recognition and target search by CRISPR-Cas enzymes and engineering more efficient and precise variants.

Suggested Citation

  • Pierre Aldag & Marius Rutkauskas & Julene Madariaga-Marcos & Inga Songailiene & Tomas Sinkunas & Felix Kemmerich & Dominik Kauert & Virginijus Siksnys & Ralf Seidel, 2023. "Dynamic interplay between target search and recognition for a Type I CRISPR-Cas system," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38790-1
    DOI: 10.1038/s41467-023-38790-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38790-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38790-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jungjoon K. Lee & Euihwan Jeong & Joonsun Lee & Minhee Jung & Eunji Shin & Young-hoon Kim & Kangin Lee & Inyoung Jung & Daesik Kim & Seokjoong Kim & Jin-Soo Kim, 2018. "Directed evolution of CRISPR-Cas9 to increase its specificity," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    2. Luciano A. Marraffini & Erik J. Sontheimer, 2010. "Self versus non-self discrimination during CRISPR RNA-directed immunity," Nature, Nature, vol. 463(7280), pages 568-571, January.
    3. Marius Rutkauskas & Inga Songailiene & Patrick Irmisch & Felix E. Kemmerich & Tomas Sinkunas & Virginijus Siksnys & Ralf Seidel, 2022. "A quantitative model for the dynamics of target recognition and off-target rejection by the CRISPR-Cas Cascade complex," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Emil Marklund & Brad Oosten & Guanzhong Mao & Elias Amselem & Kalle Kipper & Anton Sabantsev & Andrew Emmerich & Daniel Globisch & Xuan Zheng & Laura C. Lehmann & Otto G. Berg & Magnus Johansson & Joh, 2020. "DNA surface exploration and operator bypassing during target search," Nature, Nature, vol. 583(7818), pages 858-861, July.
    5. Blake Wiedenheft & Gabriel C. Lander & Kaihong Zhou & Matthijs M. Jore & Stan J. J. Brouns & John van der Oost & Jennifer A. Doudna & Eva Nogales, 2011. "Structures of the RNA-guided surveillance complex from a bacterial immune system," Nature, Nature, vol. 477(7365), pages 486-489, September.
    6. Benjamin P. Kleinstiver & Vikram Pattanayak & Michelle S. Prew & Shengdar Q. Tsai & Nhu T. Nguyen & Zongli Zheng & J. Keith Joung, 2016. "High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects," Nature, Nature, vol. 529(7587), pages 490-495, January.
    7. Sanne E. Klompe & Phuc L. H. Vo & Tyler S. Halpin-Healy & Samuel H. Sternberg, 2019. "Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration," Nature, Nature, vol. 571(7764), pages 219-225, July.
    8. Josiane E. Garneau & Marie-Ève Dupuis & Manuela Villion & Dennis A. Romero & Rodolphe Barrangou & Patrick Boyaval & Christophe Fremaux & Philippe Horvath & Alfonso H. Magadán & Sylvain Moineau, 2010. "The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA," Nature, Nature, vol. 468(7320), pages 67-71, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Péter István Kulcsár & András Tálas & Zoltán Ligeti & Sarah Laura Krausz & Ervin Welker, 2022. "SuperFi-Cas9 exhibits remarkable fidelity but severely reduced activity yet works effectively with ABE8e," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Marius Rutkauskas & Inga Songailiene & Patrick Irmisch & Felix E. Kemmerich & Tomas Sinkunas & Virginijus Siksnys & Ralf Seidel, 2022. "A quantitative model for the dynamics of target recognition and off-target rejection by the CRISPR-Cas Cascade complex," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. András Tálas & Dorottya A. Simon & Péter I. Kulcsár & Éva Varga & Sarah L. Krausz & Ervin Welker, 2021. "BEAR reveals that increased fidelity variants can successfully reduce the mismatch tolerance of adenine but not cytosine base editors," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    5. Marcus Ziemann & Viktoria Reimann & Yajing Liang & Yue Shi & Honglei Ma & Yuman Xie & Hui Li & Tao Zhu & Xuefeng Lu & Wolfgang R. Hess, 2023. "CvkR is a MerR-type transcriptional repressor of class 2 type V-K CRISPR-associated transposase systems," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Grace N. Hibshman & Jack P. K. Bravo & Matthew M. Hooper & Tyler L. Dangerfield & Hongshan Zhang & Ilya J. Finkelstein & Kenneth A. Johnson & David W. Taylor, 2024. "Unraveling the mechanisms of PAMless DNA interrogation by SpRY-Cas9," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Burcu Bestas & Sandra Wimberger & Dmitrii Degtev & Alexandra Madsen & Antje K. Rottner & Fredrik Karlsson & Sergey Naumenko & Megan Callahan & Julia Liz Touza & Margherita Francescatto & Carl Ivar Möl, 2023. "A Type II-B Cas9 nuclease with minimized off-targets and reduced chromosomal translocations in vivo," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Akiko Tomita & Hiroyuki Sasanuma & Tomoo Owa & Yuka Nakazawa & Mayuko Shimada & Takahiro Fukuoka & Tomoo Ogi & Shinichiro Nakada, 2023. "Inducing multiple nicks promotes interhomolog homologous recombination to correct heterozygous mutations in somatic cells," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    9. Péter István Kulcsár & András Tálas & Zoltán Ligeti & Eszter Tóth & Zsófia Rakvács & Zsuzsa Bartos & Sarah Laura Krausz & Ágnes Welker & Vanessza Laura Végi & Krisztina Huszár & Ervin Welker, 2023. "A cleavage rule for selection of increased-fidelity SpCas9 variants with high efficiency and no detectable off-targets," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    10. Meiling Lu & Chenlin Yu & Yuwen Zhang & Wenjun Ju & Zhi Ye & Chenyang Hua & Jinze Mao & Chunyi Hu & Zhenhuang Yang & Yibei Xiao, 2024. "Structure and genome editing of type I-B CRISPR-Cas," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Matteo Ciciani & Michele Demozzi & Eleonora Pedrazzoli & Elisabetta Visentin & Laura Pezzè & Lorenzo Federico Signorini & Aitor Blanco-Miguez & Moreno Zolfo & Francesco Asnicar & Antonio Casini & Anna, 2022. "Automated identification of sequence-tailored Cas9 proteins using massive metagenomic data," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Cécile Philippe & Carlee Morency & Pier-Luc Plante & Edwige Zufferey & Rodrigo Achigar & Denise M. Tremblay & Geneviève M. Rousseau & Adeline Goulet & Sylvain Moineau, 2022. "A truncated anti-CRISPR protein prevents spacer acquisition but not interference," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Giulia I. Corsi & Kunli Qu & Ferhat Alkan & Xiaoguang Pan & Yonglun Luo & Jan Gorodkin, 2022. "CRISPR/Cas9 gRNA activity depends on free energy changes and on the target PAM context," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Elias Amselem & Bo Broadwater & Tora Hävermark & Magnus Johansson & Johan Elf, 2023. "Real-time single-molecule 3D tracking in E. coli based on cross-entropy minimization," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Kazuto Yoshimi & Kohei Takeshita & Noriyuki Kodera & Satomi Shibumura & Yuko Yamauchi & Mine Omatsu & Kenichi Umeda & Yayoi Kunihiro & Masaki Yamamoto & Tomoji Mashimo, 2022. "Dynamic mechanisms of CRISPR interference by Escherichia coli CRISPR-Cas3," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Ning Cui & Jun-Tao Zhang & Zhuolin Li & Xiao-Yu Liu & Chongyuan Wang & Hongda Huang & Ning Jia, 2022. "Structural basis for the non-self RNA-activated protease activity of the type III-E CRISPR nuclease-protease Craspase," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Dawn G. L. Thean & Hoi Yee Chu & John H. C. Fong & Becky K. C. Chan & Peng Zhou & Cynthia C. S. Kwok & Yee Man Chan & Silvia Y. L. Mak & Gigi C. G. Choi & Joshua W. K. Ho & Zongli Zheng & Alan S. L. W, 2022. "Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Lin Zhao & Sabrina R. T. Koseki & Rachel A. Silverstein & Nadia Amrani & Christina Peng & Christian Kramme & Natasha Savic & Martin Pacesa & Tomás C. Rodríguez & Teodora Stan & Emma Tysinger & Lauren , 2023. "PAM-flexible genome editing with an engineered chimeric Cas9," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Maria Pallarès-Masmitjà & Dimitrije Ivančić & Júlia Mir-Pedrol & Jessica Jaraba-Wallace & Tommaso Tagliani & Baldomero Oliva & Amal Rahmeh & Avencia Sánchez-Mejías & Marc Güell, 2021. "Find and cut-and-transfer (FiCAT) mammalian genome engineering," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    20. Xieshuting Deng & Wei Sun & Xueyan Li & Jiuyu Wang & Zhi Cheng & Gang Sheng & Yanli Wang, 2024. "An anti-CRISPR that represses its own transcription while blocking Cas9-target DNA binding," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38790-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.