IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36879-1.html
   My bibliography  Save this article

Real-time single-molecule 3D tracking in E. coli based on cross-entropy minimization

Author

Listed:
  • Elias Amselem

    (Uppsala University)

  • Bo Broadwater

    (Uppsala University)

  • Tora Hävermark

    (Uppsala University)

  • Magnus Johansson

    (Uppsala University)

  • Johan Elf

    (Uppsala University)

Abstract

Reaching sub-millisecond 3D tracking of individual molecules in living cells would enable direct measurements of diffusion-limited macromolecular interactions under physiological conditions. Here, we present a 3D tracking principle that approaches the relevant regime. The method is based on the true excitation point spread function and cross-entropy minimization for position localization of moving fluorescent reporters. Tests on beads moving on a stage reaches 67 nm lateral and 109 nm axial precision with a time resolution of 0.84 ms at a photon count rate of 60 kHz; the measurements agree with the theoretical and simulated predictions. Our implementation also features a method for microsecond 3D PSF positioning and an estimator for diffusion analysis of tracking data. Finally, we successfully apply these methods to track the Trigger Factor protein in living bacterial cells. Overall, our results show that while it is possible to reach sub-millisecond live-cell single-molecule tracking, it is still hard to resolve state transitions based on diffusivity at this time scale.

Suggested Citation

  • Elias Amselem & Bo Broadwater & Tora Hävermark & Magnus Johansson & Johan Elf, 2023. "Real-time single-molecule 3D tracking in E. coli based on cross-entropy minimization," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36879-1
    DOI: 10.1038/s41467-023-36879-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36879-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36879-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mikhail Metelev & Erik Lundin & Ivan L. Volkov & Arvid H. Gynnå & Johan Elf & Magnus Johansson, 2022. "Direct measurements of mRNA translation kinetics in living cells," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Günter Kramer & Thomas Rauch & Wolfgang Rist & Sonja Vorderwülbecke & Holger Patzelt & Agnes Schulze-Specking & Nenad Ban & Elke Deuerling & Bernd Bukau, 2002. "L23 protein functions as a chaperone docking site on the ribosome," Nature, Nature, vol. 419(6903), pages 171-174, September.
    3. Roman Schmidt & Tobias Weihs & Christian A. Wurm & Isabelle Jansen & Jasmin Rehman & Steffen J. Sahl & Stefan W. Hell, 2021. "MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Emil Marklund & Brad Oosten & Guanzhong Mao & Elias Amselem & Kalle Kipper & Anton Sabantsev & Andrew Emmerich & Daniel Globisch & Xuan Zheng & Laura C. Lehmann & Otto G. Berg & Magnus Johansson & Joh, 2020. "DNA surface exploration and operator bypassing during target search," Nature, Nature, vol. 583(7818), pages 858-861, July.
    5. Evan P. Perillo & Yen-Liang Liu & Khang Huynh & Cong Liu & Chao-Kai Chou & Mien-Chie Hung & Hsin-Chih Yeh & Andrew K. Dunn, 2015. "Deep and high-resolution three-dimensional tracking of single particles using nonlinear and multiplexed illumination," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    6. Shangguo Hou & Jack Exell & Kevin Welsher, 2020. "Real-time 3D single molecule tracking," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuoyang Qin & Zhecheng Wang & Fei Kong & Jia Su & Zhehua Huang & Pengju Zhao & Sanyou Chen & Qi Zhang & Fazhan Shi & Jiangfeng Du, 2023. "In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Larissa Kohler & Matthias Mader & Christian Kern & Martin Wegener & David Hunger, 2021. "Tracking Brownian motion in three dimensions and characterization of individual nanoparticles using a fiber-based high-finesse microcavity," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    3. Zikun Zhu & Shuai Wang & Shu-ou Shan, 2022. "Ribosome profiling reveals multiple roles of SecA in cotranslational protein export," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Pierre Aldag & Marius Rutkauskas & Julene Madariaga-Marcos & Inga Songailiene & Tomas Sinkunas & Felix Kemmerich & Dominik Kauert & Virginijus Siksnys & Ralf Seidel, 2023. "Dynamic interplay between target search and recognition for a Type I CRISPR-Cas system," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Andrea Fossati & Deepto Mozumdar & Claire Kokontis & Melissa Mèndez-Moran & Eliza Nieweglowska & Adrian Pelin & Yuping Li & Baron Guo & Nevan J. Krogan & David A. Agard & Joseph Bondy-Denomy & Daniell, 2023. "Next-generation proteomics for quantitative Jumbophage-bacteria interaction mapping," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Sam Daly & João Ferreira Fernandes & Ezra Bruggeman & Anoushka Handa & Ruby Peters & Sarah Benaissa & Boya Zhang & Joseph S. Beckwith & Edward W. Sanders & Ruth R. Sims & David Klenerman & Simon J. Da, 2024. "High-density volumetric super-resolution microscopy," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. K. S. Vikrant & G. R. Jayanth, 2022. "Diamagnetically levitated nanopositioners with large-range and multiple degrees of freedom," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36879-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.