IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v571y2019i7764d10.1038_s41586-019-1323-z.html
   My bibliography  Save this article

Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration

Author

Listed:
  • Sanne E. Klompe

    (Columbia University)

  • Phuc L. H. Vo

    (Columbia University)

  • Tyler S. Halpin-Healy

    (Columbia University)

  • Samuel H. Sternberg

    (Columbia University)

Abstract

Conventional CRISPR–Cas systems maintain genomic integrity by leveraging guide RNAs for the nuclease-dependent degradation of mobile genetic elements, including plasmids and viruses. Here we describe a notable inversion of this paradigm, in which bacterial Tn7-like transposons have co-opted nuclease-deficient CRISPR–Cas systems to catalyse RNA-guided integration of mobile genetic elements into the genome. Programmable transposition of Vibrio cholerae Tn6677 in Escherichia coli requires CRISPR- and transposon-associated molecular machineries, including a co-complex between the DNA-targeting complex Cascade and the transposition protein TniQ. Integration of donor DNA occurs in one of two possible orientations at a fixed distance downstream of target DNA sequences, and can accommodate variable length genetic payloads. Deep-sequencing experiments reveal highly specific, genome-wide DNA insertion across dozens of unique target sites. This discovery of a fully programmable, RNA-guided integrase lays the foundation for genomic manipulations that obviate the requirements for double-strand breaks and homology-directed repair.

Suggested Citation

  • Sanne E. Klompe & Phuc L. H. Vo & Tyler S. Halpin-Healy & Samuel H. Sternberg, 2019. "Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration," Nature, Nature, vol. 571(7764), pages 219-225, July.
  • Handle: RePEc:nat:nature:v:571:y:2019:i:7764:d:10.1038_s41586-019-1323-z
    DOI: 10.1038/s41586-019-1323-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1323-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1323-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco Tenjo-Castaño & Nicholas Sofos & Blanca López-Méndez & Luisa S. Stutzke & Anders Fuglsang & Stefano Stella & Guillermo Montoya, 2022. "Structure of the TnsB transposase-DNA complex of type V-K CRISPR-associated transposon," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Marcus Ziemann & Viktoria Reimann & Yajing Liang & Yue Shi & Honglei Ma & Yuman Xie & Hui Li & Tao Zhu & Xuefeng Lu & Wolfgang R. Hess, 2023. "CvkR is a MerR-type transcriptional repressor of class 2 type V-K CRISPR-associated transposase systems," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Peter N. Ciaccia & Zhuobin Liang & Anabel Y. Schweitzer & Eli Metzner & Farren J. Isaacs, 2024. "Enhanced eMAGE applied to identify genetic factors of nuclear hormone receptor dysfunction via combinatorial gene editing," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Jing Guo & Luyao Gong & Haiying Yu & Ming Li & Qiaohui An & Zhenquan Liu & Shuru Fan & Changjialian Yang & Dahe Zhao & Jing Han & Hua Xiang, 2024. "Engineered minimal type I CRISPR-Cas system for transcriptional activation and base editing in human cells," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Maria Pallarès-Masmitjà & Dimitrije Ivančić & Júlia Mir-Pedrol & Jessica Jaraba-Wallace & Tommaso Tagliani & Baldomero Oliva & Amal Rahmeh & Avencia Sánchez-Mejías & Marc Güell, 2021. "Find and cut-and-transfer (FiCAT) mammalian genome engineering," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    6. Pierre Aldag & Marius Rutkauskas & Julene Madariaga-Marcos & Inga Songailiene & Tomas Sinkunas & Felix Kemmerich & Dominik Kauert & Virginijus Siksnys & Ralf Seidel, 2023. "Dynamic interplay between target search and recognition for a Type I CRISPR-Cas system," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Daphne Collias & Elena Vialetto & Jiaqi Yu & Khoa Co & Éva d. H. Almási & Ann-Sophie Rüttiger & Tatjana Achmedov & Till Strowig & Chase L. Beisel, 2023. "Systematically attenuating DNA targeting enables CRISPR-driven editing in bacteria," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Kuang Hu & Chia-Wei Chou & Claus O. Wilke & Ilya J. Finkelstein, 2024. "Distinct horizontal transfer mechanisms for type I and type V CRISPR-associated transposons," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Yunha Hwang & Andre L. Cornman & Elizabeth H. Kellogg & Sergey Ovchinnikov & Peter R. Girguis, 2024. "Genomic language model predicts protein co-regulation and function," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:571:y:2019:i:7764:d:10.1038_s41586-019-1323-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.