IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38743-8.html
   My bibliography  Save this article

Direct allylic acylation via cross-coupling involving cooperative N‑heterocyclic carbene, hydrogen atom transfer, and photoredox catalysis

Author

Listed:
  • Xiaochen Wang

    (Nankai University)

  • Rongxin Yang

    (Nankai University)

  • Binbing Zhu

    (Nankai University)

  • Yuxiu Liu

    (Nankai University)

  • Hongjian Song

    (Nankai University)

  • Jianyang Dong

    (Nankai University)

  • Qingmin Wang

    (Nankai University)

Abstract

Herein, we report a mild, operationally simple, multicatalytic method for the synthesis of β,γ-unsaturated ketones via allylic acylation of alkenes. Specifically, the method combines N‑heterocyclic carbene catalysis, hydrogen atom transfer catalysis, and photoredox catalysis for cross-coupling reactions between a wide range of feedstock carboxylic acids and readily available olefins to afford structurally diverse β,γ-unsaturated ketones without olefin transposition. The method could be used to install acyl groups on highly functionalized natural-product-derived compounds with no need for substrate pre-activation, and C–H functionalization proceed with excellent site selectivity. To demonstrate the potential applications of the method, we convert a representative coupling product into various useful olefin synthons.

Suggested Citation

  • Xiaochen Wang & Rongxin Yang & Binbing Zhu & Yuxiu Liu & Hongjian Song & Jianyang Dong & Qingmin Wang, 2023. "Direct allylic acylation via cross-coupling involving cooperative N‑heterocyclic carbene, hydrogen atom transfer, and photoredox catalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38743-8
    DOI: 10.1038/s41467-023-38743-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38743-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38743-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chengzhang Fu & Asfandyar Sikandar & Jannik Donner & Nestor Zaburannyi & Jennifer Herrmann & Michael Reck & Irene Wagner-Döbler & Jesko Koehnke & Rolf Müller, 2017. "The natural product carolacton inhibits folate-dependent C1 metabolism by targeting FolD/MTHFD," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    2. Hangyeol Choi & Gangadhar Rao Mathi & Seonghyeok Hong & Sungwoo Hong, 2022. "Enantioselective functionalization at the C4 position of pyridinium salts through NHC catalysis," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. You-Feng Han & Ying Huang & Hao Liu & Zhong-Hua Gao & Chun-Lin Zhang & Song Ye, 2022. "Photoredox cooperative N-heterocyclic carbene/palladium-catalysed alkylacylation of alkenes," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Matthew N. Hopkinson & Christian Richter & Michael Schedler & Frank Glorius, 2014. "An overview of N-heterocyclic carbenes," Nature, Nature, vol. 510(7506), pages 485-496, June.
    5. Bao-Sheng Li & Yuhuang Wang & Rupert S. J. Proctor & Yuexia Zhang & Richard D. Webster & Song Yang & Baoan Song & Yonggui Robin Chi, 2016. "Carbene-catalysed reductive coupling of nitrobenzyl bromides and activated ketones or imines via single-electron-transfer process," Nature Communications, Nature, vol. 7(1), pages 1-8, December.
    6. James D. Cuthbertson & David W. C. MacMillan, 2015. "The direct arylation of allylic sp3 C–H bonds via organic and photoredox catalysis," Nature, Nature, vol. 519(7541), pages 74-77, March.
    7. Shi-Chao Ren & Xing Yang & Bivas Mondal & Chengli Mou & Weiyi Tian & Zhichao Jin & Yonggui Robin Chi, 2022. "Carbene and photocatalyst-catalyzed decarboxylative radical coupling of carboxylic acids and acyl imidazoles to form ketones," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hai-Ying Wang & Xin-Han Wang & Bang-An Zhou & Chun-Lin Zhang & Song Ye, 2023. "Ketones from aldehydes via alkyl C(sp3)−H functionalization under photoredox cooperative NHC/palladium catalysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Yuxing Cai & Yuxin Zhao & Kai Tang & Hong Zhang & Xueling Mo & Jiean Chen & Yong Huang, 2024. "Amide C–N bonds activation by A new variant of bifunctional N-heterocyclic carbene," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Qingyun Wang & Shuquan Wu & Juan Zou & Xuyang Liang & Chengli Mou & Pengcheng Zheng & Yonggui Robin Chi, 2023. "NHC-catalyzed enantioselective access to β-cyano carboxylic esters via in situ substrate alternation and release," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Xin Li & Yi-Lin Wang & Chan Chen & Yan-Yan Ren & Ying-Feng Han, 2022. "A platform for blue-luminescent carbon-centered radicals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Yujun Li & Shaopeng Guo & Qing-Han Li & Ke Zheng, 2023. "Metal-free photoinduced C(sp3)–H/C(sp3)–H cross-coupling to access α‑tertiary amino acid derivatives," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Lei Zhang & Zhe Chen & Zhenpeng Liu & Jun Bu & Wenxiu Ma & Chen Yan & Rui Bai & Jin Lin & Qiuyu Zhang & Junzhi Liu & Tao Wang & Jian Zhang, 2021. "Efficient electrocatalytic acetylene semihydrogenation by electron–rich metal sites in N–heterocyclic carbene metal complexes," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Zi-Jing Zhang & Nicolas Jacob & Shilpa Bhatia & Philipp Boos & Xinran Chen & Joshua C. DeMuth & Antonis M. Messinis & Becky Bongsuiru Jei & João C. A. Oliveira & Aleksa Radović & Michael L. Neidig & , 2024. "Iron-catalyzed stereoselective C–H alkylation for simultaneous construction of C–N axial and C-central chirality," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Liang Ling & Chenyang Hu & Linhong Long & Xue Zhang & Lixing Zhao & Liu Leo Liu & Hui Chen & Meiming Luo & Xiaoming Zeng, 2023. "Chromium-catalyzed stereodivergent E- and Z-selective alkyne hydrogenation controlled by cyclic (alkyl)(amino)carbene ligands," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Jiayan Li & Ziyang Dong & Yang Chen & Zhanhui Yang & Xinen Yan & Meng Wang & Chenyang Li & Changgui Zhao, 2024. "N-Heterocyclic carbene-catalyzed enantioselective synthesis of planar-chiral cyclophanes via dynamic kinetic resolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Peng Zhou & Wenchang Li & Jianyong Lan & Tingshun Zhu, 2022. "Electroredox carbene organocatalysis with iodide as promoter," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Zhen Lei & Mizuki Endo & Hitoshi Ube & Takafumi Shiraogawa & Pei Zhao & Koichi Nagata & Xiao-Li Pei & Tomoya Eguchi & Toshiaki Kamachi & Masahiro Ehara & Takeaki Ozawa & Mitsuhiko Shionoya, 2022. "N-Heterocyclic carbene-based C-centered Au(I)-Ag(I) clusters with intense phosphorescence and organelle-selective translocation in cells," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38743-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.