IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39707-8.html
   My bibliography  Save this article

Ketones from aldehydes via alkyl C(sp3)−H functionalization under photoredox cooperative NHC/palladium catalysis

Author

Listed:
  • Hai-Ying Wang

    (CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xin-Han Wang

    (CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Bang-An Zhou

    (CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Chun-Lin Zhang

    (CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences)

  • Song Ye

    (CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Direct synthesis of ketones from aldehydes features high atom- and step-economy. Yet, the coupling of aldehydes with unactivated alkyl C(sp3)-H remains challenging. Herein, we develop the synthesis of ketones from aldehydes via alkyl C(sp3)-H functionalization under photoredox cooperative NHC/Pd catalysis. The two-component reaction of iodomethylsilyl alkyl ether with aldehydes gave a variety of β-, γ- and δ-silyloxylketones via 1,n-HAT (n = 5, 6, 7) of silylmethyl radicals to generate secondary or tertiary alkyl radicals and following coupling with ketyl radicals from aldehydes under photoredox NHC catalysis. The three-component reaction with the addition of styrenes gave the corresponding ε-hydroxylketones via the generation of benzylic radicals by the addition of alkyl radicals to styrenes and following coupling with ketyl radicals. This work demonstrates the generation of ketyl radical and alkyl radical under the photoredox cooperative NHC/Pd catalysis, and provides two and three component reactions for the synthesis of ketones from aldehydes with alkyl C(sp3)-H functionalization. The synthetic potential of this protocol was also further illustrated by the late-stage functionalization of natural products.

Suggested Citation

  • Hai-Ying Wang & Xin-Han Wang & Bang-An Zhou & Chun-Lin Zhang & Song Ye, 2023. "Ketones from aldehydes via alkyl C(sp3)−H functionalization under photoredox cooperative NHC/palladium catalysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39707-8
    DOI: 10.1038/s41467-023-39707-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39707-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39707-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. You-Feng Han & Ying Huang & Hao Liu & Zhong-Hua Gao & Chun-Lin Zhang & Song Ye, 2022. "Photoredox cooperative N-heterocyclic carbene/palladium-catalysed alkylacylation of alkenes," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Yuki Matsuki & Nagisa Ohnishi & Yuki Kakeno & Shunsuke Takemoto & Takuya Ishii & Kazunori Nagao & Hirohisa Ohmiya, 2021. "Aryl radical-mediated N-heterocyclic carbene catalysis," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Xian Zhao & Hai-Yong Tu & Lei Guo & Shengqing Zhu & Feng-Ling Qing & Lingling Chu, 2018. "Intermolecular selective carboacylation of alkenes via nickel-catalyzed reductive radical relay," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    4. Matthew N. Hopkinson & Christian Richter & Michael Schedler & Frank Glorius, 2014. "An overview of N-heterocyclic carbenes," Nature, Nature, vol. 510(7506), pages 485-496, June.
    5. Shi-Chao Ren & Xing Yang & Bivas Mondal & Chengli Mou & Weiyi Tian & Zhichao Jin & Yonggui Robin Chi, 2022. "Carbene and photocatalyst-catalyzed decarboxylative radical coupling of carboxylic acids and acyl imidazoles to form ketones," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaochen Wang & Rongxin Yang & Binbing Zhu & Yuxiu Liu & Hongjian Song & Jianyang Dong & Qingmin Wang, 2023. "Direct allylic acylation via cross-coupling involving cooperative N‑heterocyclic carbene, hydrogen atom transfer, and photoredox catalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Yuxing Cai & Yuxin Zhao & Kai Tang & Hong Zhang & Xueling Mo & Jiean Chen & Yong Huang, 2024. "Amide C–N bonds activation by A new variant of bifunctional N-heterocyclic carbene," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Qingyun Wang & Shuquan Wu & Juan Zou & Xuyang Liang & Chengli Mou & Pengcheng Zheng & Yonggui Robin Chi, 2023. "NHC-catalyzed enantioselective access to β-cyano carboxylic esters via in situ substrate alternation and release," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Xin Li & Yi-Lin Wang & Chan Chen & Yan-Yan Ren & Ying-Feng Han, 2022. "A platform for blue-luminescent carbon-centered radicals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Hangyeol Choi & Gangadhar Rao Mathi & Seonghyeok Hong & Sungwoo Hong, 2022. "Enantioselective functionalization at the C4 position of pyridinium salts through NHC catalysis," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Lei Zhang & Zhe Chen & Zhenpeng Liu & Jun Bu & Wenxiu Ma & Chen Yan & Rui Bai & Jin Lin & Qiuyu Zhang & Junzhi Liu & Tao Wang & Jian Zhang, 2021. "Efficient electrocatalytic acetylene semihydrogenation by electron–rich metal sites in N–heterocyclic carbene metal complexes," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Zi-Jing Zhang & Nicolas Jacob & Shilpa Bhatia & Philipp Boos & Xinran Chen & Joshua C. DeMuth & Antonis M. Messinis & Becky Bongsuiru Jei & João C. A. Oliveira & Aleksa Radović & Michael L. Neidig & , 2024. "Iron-catalyzed stereoselective C–H alkylation for simultaneous construction of C–N axial and C-central chirality," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Jinwei Sun & Yongze Zhou & Rui Gu & Xin Li & Ao Liu & Xuan Zhang, 2022. "Regioselective Ni-Catalyzed reductive alkylsilylation of acrylonitrile with unactivated alkyl bromides and chlorosilanes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Liang Ling & Chenyang Hu & Linhong Long & Xue Zhang & Lixing Zhao & Liu Leo Liu & Hui Chen & Meiming Luo & Xiaoming Zeng, 2023. "Chromium-catalyzed stereodivergent E- and Z-selective alkyne hydrogenation controlled by cyclic (alkyl)(amino)carbene ligands," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Jiayan Li & Ziyang Dong & Yang Chen & Zhanhui Yang & Xinen Yan & Meng Wang & Chenyang Li & Changgui Zhao, 2024. "N-Heterocyclic carbene-catalyzed enantioselective synthesis of planar-chiral cyclophanes via dynamic kinetic resolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Peng Zhou & Wenchang Li & Jianyong Lan & Tingshun Zhu, 2022. "Electroredox carbene organocatalysis with iodide as promoter," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. You-Feng Han & Ying Huang & Hao Liu & Zhong-Hua Gao & Chun-Lin Zhang & Song Ye, 2022. "Photoredox cooperative N-heterocyclic carbene/palladium-catalysed alkylacylation of alkenes," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Zhen Lei & Mizuki Endo & Hitoshi Ube & Takafumi Shiraogawa & Pei Zhao & Koichi Nagata & Xiao-Li Pei & Tomoya Eguchi & Toshiaki Kamachi & Masahiro Ehara & Takeaki Ozawa & Mitsuhiko Shionoya, 2022. "N-Heterocyclic carbene-based C-centered Au(I)-Ag(I) clusters with intense phosphorescence and organelle-selective translocation in cells," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39707-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.