IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33444-0.html
   My bibliography  Save this article

Photoredox cooperative N-heterocyclic carbene/palladium-catalysed alkylacylation of alkenes

Author

Listed:
  • You-Feng Han

    (Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Ying Huang

    (Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Hao Liu

    (Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhong-Hua Gao

    (Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Chun-Lin Zhang

    (Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences)

  • Song Ye

    (Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Three-component carboacylation of simple alkenes with readily available reagents is challenging. Transition metal-catalysed intermolecular carboacylation works for alkenes with strained ring or directing groups. Herein, we develop a photoredox cooperative N-heterocyclic carbene/Pd-catalysed alkylacylation of simple alkenes with aldehydes and unactivated alkyl halides to provide ketones in good yields. This multicomponent coupling reaction features a wide scope of alkenes, broad functional group compatibility and free of exogenous photosensitizer or external reductant. In addition, a series of chlorinated cyclopropanes with one or two vicinal quaternary carbons is obtained when chloroform or carbon tetrachloride is used as the alkyl halide. The reaction involves the alkyl radicals from halides and the ketyl radicals from aldehydes under photoredox cooperative N-heterocyclic carbene/Pd catalysis.

Suggested Citation

  • You-Feng Han & Ying Huang & Hao Liu & Zhong-Hua Gao & Chun-Lin Zhang & Song Ye, 2022. "Photoredox cooperative N-heterocyclic carbene/palladium-catalysed alkylacylation of alkenes," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33444-0
    DOI: 10.1038/s41467-022-33444-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33444-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33444-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xian Zhao & Hai-Yong Tu & Lei Guo & Shengqing Zhu & Feng-Ling Qing & Lingling Chu, 2018. "Intermolecular selective carboacylation of alkenes via nickel-catalyzed reductive radical relay," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaochen Wang & Rongxin Yang & Binbing Zhu & Yuxiu Liu & Hongjian Song & Jianyang Dong & Qingmin Wang, 2023. "Direct allylic acylation via cross-coupling involving cooperative N‑heterocyclic carbene, hydrogen atom transfer, and photoredox catalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Hai-Ying Wang & Xin-Han Wang & Bang-An Zhou & Chun-Lin Zhang & Song Ye, 2023. "Ketones from aldehydes via alkyl C(sp3)−H functionalization under photoredox cooperative NHC/palladium catalysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Mingrui Li & Yingtao Wu & Xiao Song & Jiaqiong Sun & Zuxiao Zhang & Guangfan Zheng & Qian Zhang, 2024. "Visible light-mediated organocatalyzed 1,3-aminoacylation of cyclopropane employing N-benzoyl saccharin as bifunctional reagent," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hai-Ying Wang & Xin-Han Wang & Bang-An Zhou & Chun-Lin Zhang & Song Ye, 2023. "Ketones from aldehydes via alkyl C(sp3)−H functionalization under photoredox cooperative NHC/palladium catalysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Jinwei Sun & Yongze Zhou & Rui Gu & Xin Li & Ao Liu & Xuan Zhang, 2022. "Regioselective Ni-Catalyzed reductive alkylsilylation of acrylonitrile with unactivated alkyl bromides and chlorosilanes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Shanglin Chen & Ya-Nan Wang & Jinhui Xie & Wangyang Li & Mingxing Ye & Xingxing Ma & Kai Yang & Shijun Li & Yu Lan & Qiuling Song, 2024. "Chemo-, regio- and stereoselective access to polysubstituted 1,3-dienes via Nickel-catalyzed four-component reactions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33444-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.