IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29462-7.html
   My bibliography  Save this article

Enantioselective functionalization at the C4 position of pyridinium salts through NHC catalysis

Author

Listed:
  • Hangyeol Choi

    (Korea Advanced Institute of Science and Technology (KAIST)
    Institute for Basic Science (IBS))

  • Gangadhar Rao Mathi

    (Korea Advanced Institute of Science and Technology (KAIST)
    Institute for Basic Science (IBS))

  • Seonghyeok Hong

    (Korea Advanced Institute of Science and Technology (KAIST)
    Institute for Basic Science (IBS))

  • Sungwoo Hong

    (Korea Advanced Institute of Science and Technology (KAIST)
    Institute for Basic Science (IBS))

Abstract

A catalytic method for the enantioselective and C4-selective functionalization of pyridine derivatives is yet to be developed. Herein, we report an efficient method for the asymmetric β-pyridylations of enals that involve N-heterocyclic carbene (NHC) catalysis with excellent control over enantioselectivity and pyridyl C4-selectivity. The key strategy for precise stereocontrol involves enhancing interactions between the chiral NHC-bound homoenolate and pyridinium salt in the presence of hexafluorobenzene, which effectively differentiates the two faces of the homoenolate radical. Room temperature is sufficient for this transformation, and reaction efficiency is further accelerated by photo-mediation. This methodology exhibits broad functional group tolerance and enables facile access to a diverse range of enantioenriched β-pyridyl carbonyl compounds under mild and metal-free conditions.

Suggested Citation

  • Hangyeol Choi & Gangadhar Rao Mathi & Seonghyeok Hong & Sungwoo Hong, 2022. "Enantioselective functionalization at the C4 position of pyridinium salts through NHC catalysis," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29462-7
    DOI: 10.1038/s41467-022-29462-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29462-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29462-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuki Matsuki & Nagisa Ohnishi & Yuki Kakeno & Shunsuke Takemoto & Takuya Ishii & Kazunori Nagao & Hirohisa Ohmiya, 2021. "Aryl radical-mediated N-heterocyclic carbene catalysis," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Yonghoon Moon & Bohyun Park & Inwon Kim & Gyumin Kang & Sanghoon Shin & Dahye Kang & Mu-Hyun Baik & Sungwoo Hong, 2019. "Visible light induced alkene aminopyridylation using N-aminopyridinium salts as bifunctional reagents," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaochen Wang & Rongxin Yang & Binbing Zhu & Yuxiu Liu & Hongjian Song & Jianyang Dong & Qingmin Wang, 2023. "Direct allylic acylation via cross-coupling involving cooperative N‑heterocyclic carbene, hydrogen atom transfer, and photoredox catalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Changha Kim & Yuhyun Kim & Sungwoo Hong, 2024. "1,3-Difunctionalization of [1.1.1]propellane through iron-hydride catalyzed hydropyridylation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changha Kim & Yuhyun Kim & Sungwoo Hong, 2024. "1,3-Difunctionalization of [1.1.1]propellane through iron-hydride catalyzed hydropyridylation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Hai-Ying Wang & Xin-Han Wang & Bang-An Zhou & Chun-Lin Zhang & Song Ye, 2023. "Ketones from aldehydes via alkyl C(sp3)−H functionalization under photoredox cooperative NHC/palladium catalysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Mingrui Li & Yingtao Wu & Xiao Song & Jiaqiong Sun & Zuxiao Zhang & Guangfan Zheng & Qian Zhang, 2024. "Visible light-mediated organocatalyzed 1,3-aminoacylation of cyclopropane employing N-benzoyl saccharin as bifunctional reagent," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29462-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.