IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41956-6.html
   My bibliography  Save this article

Metal-free photoinduced C(sp3)–H/C(sp3)–H cross-coupling to access α‑tertiary amino acid derivatives

Author

Listed:
  • Yujun Li

    (Sichuan University)

  • Shaopeng Guo

    (Southwest Minzu University)

  • Qing-Han Li

    (Southwest Minzu University)

  • Ke Zheng

    (Sichuan University)

Abstract

The cross-dehydrogenative coupling (CDC) reaction is the most direct and efficient method for constructing α-tertiary amino acids (ATAAs), which avoids the pre-activation of C(sp3)-H substrates. However, the use of transition metals and harsh reaction conditions are still significant challenges for these reactions that urgently require solutions. This paper presents a mild, metal-free CDC reaction for the construction of ATAAs, which is compatible with various benzyl C-H substrates, functionalized C-H substrates, and alkyl substrates, with good regioselectivity. Notably, our method exhibits excellent functional group tolerance and late-stage applicability. According to mechanistic studies, the one-step synthesized and bench-stable N-alkoxyphtalimide generates a highly electrophilic trifluoro ethoxy radical that serves as a key intermediate in the reaction process and acts as a hydrogen atom transfer reagent. Therefore, our metal-free and additive-free method offers a promising strategy for the synthesis of ATAAs under mild conditions.

Suggested Citation

  • Yujun Li & Shaopeng Guo & Qing-Han Li & Ke Zheng, 2023. "Metal-free photoinduced C(sp3)–H/C(sp3)–H cross-coupling to access α‑tertiary amino acid derivatives," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41956-6
    DOI: 10.1038/s41467-023-41956-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41956-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41956-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John J. Murphy & David Bastida & Suva Paria & Maurizio Fagnoni & Paolo Melchiorre, 2016. "Asymmetric catalytic formation of quaternary carbons by iminium ion trapping of radicals," Nature, Nature, vol. 532(7598), pages 218-222, April.
    2. Isabelle Nathalie-Marie Leibler & Makeda A. Tekle-Smith & Abigail G. Doyle, 2021. "A general strategy for C(sp3)–H functionalization with nucleophiles using methyl radical as a hydrogen atom abstractor," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. James D. Cuthbertson & David W. C. MacMillan, 2015. "The direct arylation of allylic sp3 C–H bonds via organic and photoredox catalysis," Nature, Nature, vol. 519(7541), pages 74-77, March.
    4. Kaizhi Li & Qian Wu & Jingbo Lan & Jingsong You, 2015. "Coordinating activation strategy for C(sp3)–H/C(sp3)–H cross-coupling to access β-aromatic α-amino acids," Nature Communications, Nature, vol. 6(1), pages 1-9, December.
    5. Ian B. Perry & Thomas F. Brewer & Patrick J. Sarver & Danielle M. Schultz & Daniel A. DiRocco & David W. C. MacMillan, 2018. "Direct arylation of strong aliphatic C–H bonds," Nature, Nature, vol. 560(7716), pages 70-75, August.
    6. Chao Shu & Adam Noble & Varinder K. Aggarwal, 2020. "Metal-free photoinduced C(sp3)–H borylation of alkanes," Nature, Nature, vol. 586(7831), pages 714-719, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenghui Wen & Diego Pintossi & Manuel Nuño & Timothy Noël, 2022. "Membrane-based TBADT recovery as a strategy to increase the sustainability of continuous-flow photocatalytic HAT transformations," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Ping-Fu Zhong & Jia-Lin Tu & Yating Zhao & Nan Zhong & Chao Yang & Lin Guo & Wujiong Xia, 2023. "Photoelectrochemical oxidative C(sp3)−H borylation of unactivated hydrocarbons," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Yue Wang & Suping Zhang & Ke Zeng & Pengli Zhang & Xiaorong Song & Tie-Gen Chen & Guoqin Xia, 2024. "Deoxygenative radical cross-coupling of C(sp3)−O/C(sp3)−H bonds promoted by hydrogen-bond interaction," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Long Huang & Marcin Szewczyk & Rajesh Kancherla & Bholanath Maity & Chen Zhu & Luigi Cavallo & Magnus Rueping, 2023. "Modulating stereoselectivity in allylic C(sp3)-H bond arylations via nickel and photoredox catalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Xiaochen Wang & Rongxin Yang & Binbing Zhu & Yuxiu Liu & Hongjian Song & Jianyang Dong & Qingmin Wang, 2023. "Direct allylic acylation via cross-coupling involving cooperative N‑heterocyclic carbene, hydrogen atom transfer, and photoredox catalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Changha Kim & Yuhyun Kim & Sungwoo Hong, 2024. "1,3-Difunctionalization of [1.1.1]propellane through iron-hydride catalyzed hydropyridylation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Geun Seok Lee & Beomsoon Park & Soon Hyeok Hong, 2022. "Stereoretentive cross-coupling of chiral amino acid chlorides and hydrocarbons through mechanistically controlled Ni/Ir photoredox catalysis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41956-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.