IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30583-2.html
   My bibliography  Save this article

Carbene and photocatalyst-catalyzed decarboxylative radical coupling of carboxylic acids and acyl imidazoles to form ketones

Author

Listed:
  • Shi-Chao Ren

    (Guizhou University
    Nanyang Technological University)

  • Xing Yang

    (Nanyang Technological University)

  • Bivas Mondal

    (Nanyang Technological University)

  • Chengli Mou

    (Guizhou University of Traditional Chinese Medicine)

  • Weiyi Tian

    (Guizhou University of Traditional Chinese Medicine)

  • Zhichao Jin

    (Guizhou University)

  • Yonggui Robin Chi

    (Guizhou University
    Nanyang Technological University)

Abstract

The carbene and photocatalyst co-catalyzed radical coupling of acyl electrophile and a radical precursor is emerging as attractive method for ketone synthesis. However, previous reports mainly limited to prefunctionalized radical precursors and two-component coupling. Herein, an N-heterocyclic carbene and photocatalyst catalyzed decarboxylative radical coupling of carboxylic acids and acyl imidazoles is disclosed, in which the carboxylic acids are directly used as radical precursors. The acyl imidazoles could also be generated in situ by reaction of a carboxylic acid with CDI thus furnishing a formally decarboxylative coupling of two carboxylic acids. In addition, the reaction is successfully extended to three-component coupling by using alkene as a third coupling partner via a radical relay process. The mild conditions, operational simplicity, and use of carboxylic acids as the reacting partners make our method a powerful strategy for construction of complex ketones from readily available starting materials, and late-stage modification of natural products and medicines.

Suggested Citation

  • Shi-Chao Ren & Xing Yang & Bivas Mondal & Chengli Mou & Weiyi Tian & Zhichao Jin & Yonggui Robin Chi, 2022. "Carbene and photocatalyst-catalyzed decarboxylative radical coupling of carboxylic acids and acyl imidazoles to form ketones," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30583-2
    DOI: 10.1038/s41467-022-30583-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30583-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30583-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaochen Wang & Rongxin Yang & Binbing Zhu & Yuxiu Liu & Hongjian Song & Jianyang Dong & Qingmin Wang, 2023. "Direct allylic acylation via cross-coupling involving cooperative N‑heterocyclic carbene, hydrogen atom transfer, and photoredox catalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Hai-Ying Wang & Xin-Han Wang & Bang-An Zhou & Chun-Lin Zhang & Song Ye, 2023. "Ketones from aldehydes via alkyl C(sp3)−H functionalization under photoredox cooperative NHC/palladium catalysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Mingrui Li & Yingtao Wu & Xiao Song & Jiaqiong Sun & Zuxiao Zhang & Guangfan Zheng & Qian Zhang, 2024. "Visible light-mediated organocatalyzed 1,3-aminoacylation of cyclopropane employing N-benzoyl saccharin as bifunctional reagent," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30583-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.