IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38101-8.html
   My bibliography  Save this article

The Fgf/Erf/NCoR1/2 repressive axis controls trophoblast cell fate

Author

Listed:
  • Andreas Lackner

    (Medical University of Vienna)

  • Michael Müller

    (Medical University of Vienna)

  • Magdalena Gamperl

    (Medical University of Vienna)

  • Delyana Stoeva

    (Medical University of Vienna)

  • Olivia Langmann

    (Medical University of Vienna)

  • Henrieta Papuchova

    (Medical University of Vienna)

  • Elisabeth Roitinger

    (Institute of Molecular Pathology)

  • Gerhard Dürnberger

    (Institute of Molecular Pathology)

  • Richard Imre

    (Institute of Molecular Pathology)

  • Karl Mechtler

    (Institute of Molecular Pathology)

  • Paulina A. Latos

    (Medical University of Vienna)

Abstract

Placental development relies on coordinated cell fate decisions governed by signalling inputs. However, little is known about how signalling cues are transformed into repressive mechanisms triggering lineage-specific transcriptional signatures. Here, we demonstrate that upon inhibition of the Fgf/Erk pathway in mouse trophoblast stem cells (TSCs), the Ets2 repressor factor (Erf) interacts with the Nuclear Receptor Co-Repressor Complex 1 and 2 (NCoR1/2) and recruits it to key trophoblast genes. Genetic ablation of Erf or Tbl1x (a component of the NCoR1/2 complex) abrogates the Erf/NCoR1/2 interaction. This leads to mis-expression of Erf/NCoR1/2 target genes, resulting in a TSC differentiation defect. Mechanistically, Erf regulates expression of these genes by recruiting the NCoR1/2 complex and decommissioning their H3K27ac-dependent enhancers. Our findings uncover how the Fgf/Erf/NCoR1/2 repressive axis governs cell fate and placental development, providing a paradigm for Fgf-mediated transcriptional control.

Suggested Citation

  • Andreas Lackner & Michael Müller & Magdalena Gamperl & Delyana Stoeva & Olivia Langmann & Henrieta Papuchova & Elisabeth Roitinger & Gerhard Dürnberger & Richard Imre & Karl Mechtler & Paulina A. Lato, 2023. "The Fgf/Erf/NCoR1/2 repressive axis controls trophoblast cell fate," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38101-8
    DOI: 10.1038/s41467-023-38101-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38101-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38101-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ola Hermanson & Kristen Jepsen & Michael G. Rosenfeld, 2002. "N-CoR controls differentiation of neural stem cells into astrocytes," Nature, Nature, vol. 419(6910), pages 934-939, October.
    2. Patrick Bryant & Gabriele Pozzati & Arne Elofsson, 2022. "Author Correction: Improved prediction of protein-protein interactions using AlphaFold2," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    3. Yoshihiro Matsumura & Ryo Ito & Ayumu Yajima & Rei Yamaguchi & Toshiya Tanaka & Takeshi Kawamura & Kenta Magoori & Yohei Abe & Aoi Uchida & Takeshi Yoneshiro & Hiroyuki Hirakawa & Ji Zhang & Makoto Ar, 2021. "Spatiotemporal dynamics of SETD5-containing NCoR–HDAC3 complex determines enhancer activation for adipogenesis," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    4. Patrick Bryant & Gabriele Pozzati & Arne Elofsson, 2022. "Improved prediction of protein-protein interactions using AlphaFold2," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Chen Chen & Wenjun Ouyang & Vadim Grigura & Qing Zhou & Kay Carnes & Hyunjung Lim & Guang-Quan Zhao & Silvia Arber & Natasza Kurpios & Theresa L. Murphy & Alec M. Cheng & John A. Hassell & Varadaraj C, 2005. "ERM is required for transcriptional control of the spermatogonial stem cell niche," Nature, Nature, vol. 436(7053), pages 1030-1034, August.
    6. Rene C. Adam & Hanseul Yang & Shira Rockowitz & Samantha B. Larsen & Maria Nikolova & Daniel S. Oristian & Lisa Polak & Meelis Kadaja & Amma Asare & Deyou Zheng & Elaine Fuchs, 2015. "Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice," Nature, Nature, vol. 521(7552), pages 366-370, May.
    7. J. A. Hartigan & M. A. Wong, 1979. "A K‐Means Clustering Algorithm," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(1), pages 100-108, March.
    8. Paulina A. Latos & Angela Goncalves & David Oxley & Hisham Mohammed & Ernest Turro & Myriam Hemberger, 2015. "Fgf and Esrrb integrate epigenetic and transcriptional networks that regulate self-renewal of trophoblast stem cells," Nature Communications, Nature, vol. 6(1), pages 1-14, November.
    9. Mu Gao & Davi Nakajima An & Jerry M. Parks & Jeffrey Skolnick, 2022. "AF2Complex predicts direct physical interactions in multimeric proteins with deep learning," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Jiangming Luo & Robert Sladek & Jo-Ann Bader & Annie Matthyssen & Janet Rossant & Vincent Giguère, 1997. "Placental abnormalities in mouse embryos lacking the orphan nuclear receptor ERR-β," Nature, Nature, vol. 388(6644), pages 778-782, August.
    11. Kristen Jepsen & Derek Solum & Tianyuan Zhou & Robert J. McEvilly & Hyun-Jung Kim & Christopher K. Glass & Ola Hermanson & Michael G. Rosenfeld, 2007. "SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron," Nature, Nature, vol. 450(7168), pages 415-419, November.
    12. Bum-Kyu Lee & Yu jin Jang & Mijeong Kim & Lucy LeBlanc & Catherine Rhee & Jiwoon Lee & Samuel Beck & Wenwen Shen & Jonghwan Kim, 2019. "Super-enhancer-guided mapping of regulatory networks controlling mouse trophoblast stem cells," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    13. Caryn S. Ross-Innes & Rory Stark & Andrew E. Teschendorff & Kelly A. Holmes & H. Raza Ali & Mark J. Dunning & Gordon D. Brown & Ondrej Gojis & Ian O. Ellis & Andrew R. Green & Simak Ali & Suet-Feung C, 2012. "Differential oestrogen receptor binding is associated with clinical outcome in breast cancer," Nature, Nature, vol. 481(7381), pages 389-393, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Buhlheller & Theo Sagmeister & Christoph Grininger & Nina Gubensäk & Uwe B. Sleytr & Isabel Usón & Tea Pavkov-Keller, 2024. "SymProFold: Structural prediction of symmetrical biological assemblies," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Hélène Bret & Jinmei Gao & Diego Javier Zea & Jessica Andreani & Raphaël Guerois, 2024. "From interaction networks to interfaces, scanning intrinsically disordered regions using AlphaFold2," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Zhiye Guo & Jian Liu & Jeffrey Skolnick & Jianlin Cheng, 2022. "Prediction of inter-chain distance maps of protein complexes with 2D attention-based deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Marin Matic & Pasquale Miglionico & Manae Tatsumi & Asuka Inoue & Francesco Raimondi, 2023. "GPCRome-wide analysis of G-protein-coupling diversity using a computational biology approach," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Genki Hibi & Taro Shiraishi & Tatsuki Umemura & Kenji Nemoto & Yusuke Ogura & Makoto Nishiyama & Tomohisa Kuzuyama, 2023. "Discovery of type II polyketide synthase-like enzymes for the biosynthesis of cispentacin," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Kazutoshi Tani & Ryo Kanno & Xuan-Cheng Ji & Itsusei Satoh & Yuki Kobayashi & Malgorzata Hall & Long-Jiang Yu & Yukihiro Kimura & Akira Mizoguchi & Bruno M. Humbel & Michael T. Madigan & Zheng-Yu Wang, 2023. "Rhodobacter capsulatus forms a compact crescent-shaped LH1–RC photocomplex," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Patrick Bryant & Gabriele Pozzati & Wensi Zhu & Aditi Shenoy & Petras Kundrotas & Arne Elofsson, 2022. "Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Qianqiao Liu & Beth M. Stadtmueller, 2023. "SIgA structures bound to Streptococcus pyogenes M4 and human CD89 provide insights into host-pathogen interactions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Brooke M. Britton & Remy A. Yovanno & Sara F. Costa & Joshua McCausland & Albert Y. Lau & Jie Xiao & Zach Hensel, 2023. "Conformational changes in the essential E. coli septal cell wall synthesis complex suggest an activation mechanism," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Patrick Bryant & Frank Noé, 2024. "Structure prediction of alternative protein conformations," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Tânia F. Custódio & Maxime Killer & Dingquan Yu & Virginia Puente & Daniel P. Teufel & Alexander Pautsch & Gisela Schnapp & Marc Grundl & Jan Kosinski & Christian Löw, 2023. "Molecular basis of TASL recruitment by the peptide/histidine transporter 1, PHT1," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Kaela M. Varberg & Esteban M. Dominguez & Boryana Koseva & Joseph M. Varberg & Ross P. McNally & Ayelen Moreno-Irusta & Emily R. Wesley & Khursheed Iqbal & Warren A. Cheung & Carl Schwendinger-Schreck, 2023. "Extravillous trophoblast cell lineage development is associated with active remodeling of the chromatin landscape," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    13. Devlina Chakravarty & Joseph W. Schafer & Ethan A. Chen & Joseph F. Thole & Leslie A. Ronish & Myeongsang Lee & Lauren L. Porter, 2024. "AlphaFold predictions of fold-switched conformations are driven by structure memorization," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Natalie DeForest & Yuqi Wang & Zhiyi Zhu & Jacqueline S. Dron & Ryan Koesterer & Pradeep Natarajan & Jason Flannick & Tiffany Amariuta & Gina M. Peloso & Amit R. Majithia, 2024. "Genome-wide discovery and integrative genomic characterization of insulin resistance loci using serum triglycerides to HDL-cholesterol ratio as a proxy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Xu, Jing & Wang, Xiaoying & Gu, Yujiong & Ma, Suxia, 2023. "A data-based day-ahead scheduling optimization approach for regional integrated energy systems with varying operating conditions," Energy, Elsevier, vol. 283(C).
    16. Carlos Carrasco-Farré, 2022. "The fingerprints of misinformation: how deceptive content differs from reliable sources in terms of cognitive effort and appeal to emotions," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-18, December.
    17. Felix Mbuga & Cristina Tortora, 2021. "Spectral Clustering of Mixed-Type Data," Stats, MDPI, vol. 5(1), pages 1-11, December.
    18. Nickole Moon & Christopher P. Morgan & Ruth Marx-Rattner & Alyssa Jeng & Rachel L. Johnson & Ijeoma Chikezie & Carmen Mannella & Mary D. Sammel & C. Neill Epperson & Tracy L. Bale, 2024. "Stress increases sperm respiration and motility in mice and men," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    19. Zhang, Weibin & Zha, Huazhu & Zhang, Shuai & Ma, Lei, 2023. "Road section traffic flow prediction method based on the traffic factor state network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    20. Yawen Lei & Yaoguang Yu & Wei Fu & Tao Zhu & Caihong Wu & Zhihao Zhang & Zewang Yu & Xin Song & Jianqu Xu & Zhenwei Liang & Peitao Lü & Chenlong Li, 2024. "BCL7A and BCL7B potentiate SWI/SNF-complex-mediated chromatin accessibility to regulate gene expression and vegetative phase transition in plants," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38101-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.