IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43731-z.html
   My bibliography  Save this article

Discovery of type II polyketide synthase-like enzymes for the biosynthesis of cispentacin

Author

Listed:
  • Genki Hibi

    (The University of Tokyo)

  • Taro Shiraishi

    (The University of Tokyo
    The University of Tokyo)

  • Tatsuki Umemura

    (The University of Tokyo)

  • Kenji Nemoto

    (The University of Tokyo)

  • Yusuke Ogura

    (The University of Tokyo)

  • Makoto Nishiyama

    (The University of Tokyo
    The University of Tokyo)

  • Tomohisa Kuzuyama

    (The University of Tokyo
    The University of Tokyo)

Abstract

Type II polyketide synthases (PKSs) normally synthesize polycyclic aromatic compounds in nature, and the potential to elaborate further diverse skeletons was recently revealed by the discovery of a polyene subgroup. Here, we show a type II PKS machinery for the biosynthesis of a five-membered nonaromatic skeleton contained in the nonproteinogenic amino acid cispentacin and the plant toxin coronatine. We successfully produce cispentacin in a heterologous host and reconstruct its biosynthesis using seven recombinant proteins in vitro. Biochemical analyses of each protein reveal the unique enzymatic reactions, indicating that a heterodimer of type II PKS-like enzymes (AmcF–AmcG) catalyzes a single C2 elongation as well as a subsequent cyclization on the acyl carrier protein (AmcB) to form a key intermediate with a five-membered ring. The subsequent reactions, which are catalyzed by a collection of type II PKS-like enzymes, are also peculiar. This work further expands the definition of type II PKS and illuminates an unexplored genetic resource for natural products.

Suggested Citation

  • Genki Hibi & Taro Shiraishi & Tatsuki Umemura & Kenji Nemoto & Yusuke Ogura & Makoto Nishiyama & Tomohisa Kuzuyama, 2023. "Discovery of type II polyketide synthase-like enzymes for the biosynthesis of cispentacin," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43731-z
    DOI: 10.1038/s41467-023-43731-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43731-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43731-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patrick Bryant & Gabriele Pozzati & Arne Elofsson, 2022. "Author Correction: Improved prediction of protein-protein interactions using AlphaFold2," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    2. Mairi M. Littleson & Christopher M. Baker & Anne J. Dalençon & Elizabeth C. Frye & Craig Jamieson & Alan R. Kennedy & Kenneth B. Ling & Matthew M. McLachlan & Mark G. Montgomery & Claire J. Russell & , 2018. "Scalable total synthesis and comprehensive structure–activity relationship studies of the phytotoxin coronatine," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    3. Patrick Bryant & Gabriele Pozzati & Arne Elofsson, 2022. "Improved prediction of protein-protein interactions using AlphaFold2," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marin Matic & Pasquale Miglionico & Manae Tatsumi & Asuka Inoue & Francesco Raimondi, 2023. "GPCRome-wide analysis of G-protein-coupling diversity using a computational biology approach," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Kazutoshi Tani & Ryo Kanno & Xuan-Cheng Ji & Itsusei Satoh & Yuki Kobayashi & Malgorzata Hall & Long-Jiang Yu & Yukihiro Kimura & Akira Mizoguchi & Bruno M. Humbel & Michael T. Madigan & Zheng-Yu Wang, 2023. "Rhodobacter capsulatus forms a compact crescent-shaped LH1–RC photocomplex," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Andreas Lackner & Michael Müller & Magdalena Gamperl & Delyana Stoeva & Olivia Langmann & Henrieta Papuchova & Elisabeth Roitinger & Gerhard Dürnberger & Richard Imre & Karl Mechtler & Paulina A. Lato, 2023. "The Fgf/Erf/NCoR1/2 repressive axis controls trophoblast cell fate," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Patrick Bryant & Gabriele Pozzati & Wensi Zhu & Aditi Shenoy & Petras Kundrotas & Arne Elofsson, 2022. "Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Qianqiao Liu & Beth M. Stadtmueller, 2023. "SIgA structures bound to Streptococcus pyogenes M4 and human CD89 provide insights into host-pathogen interactions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Brooke M. Britton & Remy A. Yovanno & Sara F. Costa & Joshua McCausland & Albert Y. Lau & Jie Xiao & Zach Hensel, 2023. "Conformational changes in the essential E. coli septal cell wall synthesis complex suggest an activation mechanism," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Yang Yue & Shu Li & Yihua Cheng & Lie Wang & Tingjun Hou & Zexuan Zhu & Shan He, 2024. "Integration of molecular coarse-grained model into geometric representation learning framework for protein-protein complex property prediction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Patrick Bryant & Frank Noé, 2024. "Structure prediction of alternative protein conformations," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Christoph Buhlheller & Theo Sagmeister & Christoph Grininger & Nina Gubensäk & Uwe B. Sleytr & Isabel Usón & Tea Pavkov-Keller, 2024. "SymProFold: Structural prediction of symmetrical biological assemblies," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Hélène Bret & Jinmei Gao & Diego Javier Zea & Jessica Andreani & Raphaël Guerois, 2024. "From interaction networks to interfaces, scanning intrinsically disordered regions using AlphaFold2," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Zhiye Guo & Jian Liu & Jeffrey Skolnick & Jianlin Cheng, 2022. "Prediction of inter-chain distance maps of protein complexes with 2D attention-based deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Tânia F. Custódio & Maxime Killer & Dingquan Yu & Virginia Puente & Daniel P. Teufel & Alexander Pautsch & Gisela Schnapp & Marc Grundl & Jan Kosinski & Christian Löw, 2023. "Molecular basis of TASL recruitment by the peptide/histidine transporter 1, PHT1," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Devlina Chakravarty & Joseph W. Schafer & Ethan A. Chen & Joseph F. Thole & Leslie A. Ronish & Myeongsang Lee & Lauren L. Porter, 2024. "AlphaFold predictions of fold-switched conformations are driven by structure memorization," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Jian Sun & Guangchen Zhang & Zhibo Cui & Ximan Kong & Xiaoyu Yu & Rui Gui & Yuqing Han & Zhuan Li & Hong Lang & Yuchen Hua & Xuemin Zhang & Quan Xu & Liang Tang & Zhengjin Xu & Dianrong Ma & Wenfu Che, 2022. "Regain flood adaptation in rice through a 14-3-3 protein OsGF14h," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43731-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.