IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51507-2.html
   My bibliography  Save this article

Structure prediction of alternative protein conformations

Author

Listed:
  • Patrick Bryant

    (Freie Universität Berlin
    Stockholm University
    Science for Life Laboratory)

  • Frank Noé

    (Freie Universität Berlin
    Microsoft Research AI4Science)

Abstract

Proteins are dynamic molecules whose movements result in different conformations with different functions. Neural networks such as AlphaFold2 can predict the structure of single-chain proteins with conformations most likely to exist in the PDB. However, almost all protein structures with multiple conformations represented in the PDB have been used while training these models. Therefore, it is unclear whether alternative protein conformations can be genuinely predicted using these networks, or if they are simply reproduced from memory. Here, we train a structure prediction network, Cfold, on a conformational split of the PDB to generate alternative conformations. Cfold enables efficient exploration of the conformational landscape of monomeric protein structures. Over 50% of experimentally known nonredundant alternative protein conformations evaluated here are predicted with high accuracy (TM-score > 0.8).

Suggested Citation

  • Patrick Bryant & Frank Noé, 2024. "Structure prediction of alternative protein conformations," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51507-2
    DOI: 10.1038/s41467-024-51507-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51507-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51507-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patrick Bryant & Gabriele Pozzati & Arne Elofsson, 2022. "Author Correction: Improved prediction of protein-protein interactions using AlphaFold2," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    2. Patrick Bryant & Gabriele Pozzati & Arne Elofsson, 2022. "Improved prediction of protein-protein interactions using AlphaFold2," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Martin Steinegger & Johannes Söding, 2018. "Clustering huge protein sequence sets in linear time," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    4. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazutoshi Tani & Ryo Kanno & Xuan-Cheng Ji & Itsusei Satoh & Yuki Kobayashi & Malgorzata Hall & Long-Jiang Yu & Yukihiro Kimura & Akira Mizoguchi & Bruno M. Humbel & Michael T. Madigan & Zheng-Yu Wang, 2023. "Rhodobacter capsulatus forms a compact crescent-shaped LH1–RC photocomplex," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Patrick Bryant & Gabriele Pozzati & Wensi Zhu & Aditi Shenoy & Petras Kundrotas & Arne Elofsson, 2022. "Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Brooke M. Britton & Remy A. Yovanno & Sara F. Costa & Joshua McCausland & Albert Y. Lau & Jie Xiao & Zach Hensel, 2023. "Conformational changes in the essential E. coli septal cell wall synthesis complex suggest an activation mechanism," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Christoph Buhlheller & Theo Sagmeister & Christoph Grininger & Nina Gubensäk & Uwe B. Sleytr & Isabel Usón & Tea Pavkov-Keller, 2024. "SymProFold: Structural prediction of symmetrical biological assemblies," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Hélène Bret & Jinmei Gao & Diego Javier Zea & Jessica Andreani & Raphaël Guerois, 2024. "From interaction networks to interfaces, scanning intrinsically disordered regions using AlphaFold2," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Zhiye Guo & Jian Liu & Jeffrey Skolnick & Jianlin Cheng, 2022. "Prediction of inter-chain distance maps of protein complexes with 2D attention-based deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Tânia F. Custódio & Maxime Killer & Dingquan Yu & Virginia Puente & Daniel P. Teufel & Alexander Pautsch & Gisela Schnapp & Marc Grundl & Jan Kosinski & Christian Löw, 2023. "Molecular basis of TASL recruitment by the peptide/histidine transporter 1, PHT1," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Devlina Chakravarty & Joseph W. Schafer & Ethan A. Chen & Joseph F. Thole & Leslie A. Ronish & Myeongsang Lee & Lauren L. Porter, 2024. "AlphaFold predictions of fold-switched conformations are driven by structure memorization," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Peicong Lin & Yumeng Yan & Huanyu Tao & Sheng-You Huang, 2023. "Deep transfer learning for inter-chain contact predictions of transmembrane protein complexes," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Marin Matic & Pasquale Miglionico & Manae Tatsumi & Asuka Inoue & Francesco Raimondi, 2023. "GPCRome-wide analysis of G-protein-coupling diversity using a computational biology approach," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Genki Hibi & Taro Shiraishi & Tatsuki Umemura & Kenji Nemoto & Yusuke Ogura & Makoto Nishiyama & Tomohisa Kuzuyama, 2023. "Discovery of type II polyketide synthase-like enzymes for the biosynthesis of cispentacin," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Andreas Lackner & Michael Müller & Magdalena Gamperl & Delyana Stoeva & Olivia Langmann & Henrieta Papuchova & Elisabeth Roitinger & Gerhard Dürnberger & Richard Imre & Karl Mechtler & Paulina A. Lato, 2023. "The Fgf/Erf/NCoR1/2 repressive axis controls trophoblast cell fate," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    13. Qianqiao Liu & Beth M. Stadtmueller, 2023. "SIgA structures bound to Streptococcus pyogenes M4 and human CD89 provide insights into host-pathogen interactions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. David Moi & Shunsuke Nishio & Xiaohui Li & Clari Valansi & Mauricio Langleib & Nicolas G. Brukman & Kateryna Flyak & Christophe Dessimoz & Daniele de Sanctis & Kathryn Tunyasuvunakool & John Jumper & , 2022. "Discovery of archaeal fusexins homologous to eukaryotic HAP2/GCS1 gamete fusion proteins," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    15. Jeffrey A. Ruffolo & Lee-Shin Chu & Sai Pooja Mahajan & Jeffrey J. Gray, 2023. "Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Ivan Koludarov & Tobias Senoner & Timothy N. W. Jackson & Daniel Dashevsky & Michael Heinzinger & Steven D. Aird & Burkhard Rost, 2023. "Domain loss enabled evolution of novel functions in the snake three-finger toxin gene superfamily," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Julia Koehler Leman & Pawel Szczerbiak & P. Douglas Renfrew & Vladimir Gligorijevic & Daniel Berenberg & Tommi Vatanen & Bryn C. Taylor & Chris Chandler & Stefan Janssen & Andras Pataki & Nick Carrier, 2023. "Sequence-structure-function relationships in the microbial protein universe," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Junhui Peng & Li Zhao, 2024. "The origin and structural evolution of de novo genes in Drosophila," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    20. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51507-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.