IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33729-4.html
   My bibliography  Save this article

Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search

Author

Listed:
  • Patrick Bryant

    (Science for Life Laboratory
    Stockholm University)

  • Gabriele Pozzati

    (Science for Life Laboratory
    Stockholm University)

  • Wensi Zhu

    (Science for Life Laboratory
    Stockholm University)

  • Aditi Shenoy

    (Science for Life Laboratory
    Stockholm University)

  • Petras Kundrotas

    (Science for Life Laboratory
    The University of Kansas)

  • Arne Elofsson

    (Science for Life Laboratory
    Stockholm University)

Abstract

AlphaFold can predict the structure of single- and multiple-chain proteins with very high accuracy. However, the accuracy decreases with the number of chains, and the available GPU memory limits the size of protein complexes which can be predicted. Here we show that one can predict the structure of large complexes starting from predictions of subcomponents. We assemble 91 out of 175 complexes with 10–30 chains from predicted subcomponents using Monte Carlo tree search, with a median TM-score of 0.51. There are 30 highly accurate complexes (TM-score ≥0.8, 33% of complete assemblies). We create a scoring function, mpDockQ, that can distinguish if assemblies are complete and predict their accuracy. We find that complexes containing symmetry are accurately assembled, while asymmetrical complexes remain challenging. The method is freely available and accesible as a Colab notebook https://colab.research.google.com/github/patrickbryant1/MoLPC/blob/master/MoLPC.ipynb .

Suggested Citation

  • Patrick Bryant & Gabriele Pozzati & Wensi Zhu & Aditi Shenoy & Petras Kundrotas & Arne Elofsson, 2022. "Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33729-4
    DOI: 10.1038/s41467-022-33729-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33729-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33729-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel Russel & Keren Lasker & Ben Webb & Javier Velázquez-Muriel & Elina Tjioe & Dina Schneidman-Duhovny & Bret Peterson & Andrej Sali, 2012. "Putting the Pieces Together: Integrative Modeling Platform Software for Structure Determination of Macromolecular Assemblies," PLOS Biology, Public Library of Science, vol. 10(1), pages 1-5, January.
    2. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    3. Patrick Bryant & Gabriele Pozzati & Arne Elofsson, 2022. "Author Correction: Improved prediction of protein-protein interactions using AlphaFold2," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    4. Patrick Bryant & Gabriele Pozzati & Arne Elofsson, 2022. "Improved prediction of protein-protein interactions using AlphaFold2," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Anthony P. Schuller & Matthias Wojtynek & David Mankus & Meltem Tatli & Rafael Kronenberg-Tenga & Saroj G. Regmi & Phat V. Dip & Abigail K. R. Lytton-Jean & Edward J. Brignole & Mary Dasso & Karsten W, 2021. "The cellular environment shapes the nuclear pore complex architecture," Nature, Nature, vol. 598(7882), pages 667-671, October.
    6. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    7. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    8. Katja Luck & Dae-Kyum Kim & Luke Lambourne & Kerstin Spirohn & Bridget E. Begg & Wenting Bian & Ruth Brignall & Tiziana Cafarelli & Francisco J. Campos-Laborie & Benoit Charloteaux & Dongsic Choi & At, 2020. "A reference map of the human binary protein interactome," Nature, Nature, vol. 580(7803), pages 402-408, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjing Yan & Yongwang Zhong & Xin Hu & Tuan Xu & Yinghua Zhang & Stephen Kales & Yanyan Qu & Daniel C. Talley & Bolormaa Baljinnyam & Christopher A. LeClair & Anton Simeonov & Brian M. Polster & Ruil, 2023. "Auranofin targets UBA1 and enhances UBA1 activity by facilitating ubiquitin trans-thioesterification to E2 ubiquitin-conjugating enzymes," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Claudio Mirabello & Björn Wallner & Björn Nystedt & Stavros Azinas & Marta Carroni, 2024. "Unmasking AlphaFold to integrate experiments and predictions in multimeric complexes," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Mads Jeppesen & Ingemar André, 2023. "Accurate prediction of protein assembly structure by combining AlphaFold and symmetrical docking," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazutoshi Tani & Ryo Kanno & Xuan-Cheng Ji & Itsusei Satoh & Yuki Kobayashi & Malgorzata Hall & Long-Jiang Yu & Yukihiro Kimura & Akira Mizoguchi & Bruno M. Humbel & Michael T. Madigan & Zheng-Yu Wang, 2023. "Rhodobacter capsulatus forms a compact crescent-shaped LH1–RC photocomplex," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Hélène Bret & Jinmei Gao & Diego Javier Zea & Jessica Andreani & Raphaël Guerois, 2024. "From interaction networks to interfaces, scanning intrinsically disordered regions using AlphaFold2," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Zhiye Guo & Jian Liu & Jeffrey Skolnick & Jianlin Cheng, 2022. "Prediction of inter-chain distance maps of protein complexes with 2D attention-based deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Tânia F. Custódio & Maxime Killer & Dingquan Yu & Virginia Puente & Daniel P. Teufel & Alexander Pautsch & Gisela Schnapp & Marc Grundl & Jan Kosinski & Christian Löw, 2023. "Molecular basis of TASL recruitment by the peptide/histidine transporter 1, PHT1," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Patrick Bryant & Gabriele Pozzati & Arne Elofsson, 2022. "Improved prediction of protein-protein interactions using AlphaFold2," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Gergo Gogl & Boglarka Zambo & Camille Kostmann & Alexandra Cousido-Siah & Bastien Morlet & Fabien Durbesson & Luc Negroni & Pascal Eberling & Pau Jané & Yves Nominé & Andras Zeke & Søren Østergaard & , 2022. "Quantitative fragmentomics allow affinity mapping of interactomes," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Brooke M. Britton & Remy A. Yovanno & Sara F. Costa & Joshua McCausland & Albert Y. Lau & Jie Xiao & Zach Hensel, 2023. "Conformational changes in the essential E. coli septal cell wall synthesis complex suggest an activation mechanism," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Zhenchong Mo & Lin Gong & Mingren Zhu & Junde Lan, 2024. "The Generative Generic-Field Design Method Based on Design Cognition and Knowledge Reasoning," Sustainability, MDPI, vol. 16(22), pages 1-34, November.
    9. Sun-Ting Tsai & Eric Fields & Yijia Xu & En-Jui Kuo & Pratyush Tiwary, 2022. "Path sampling of recurrent neural networks by incorporating known physics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Patrick Bryant & Frank Noé, 2024. "Structure prediction of alternative protein conformations," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Yuan Liu & Jingwen Yang & Tianlu Wang & Mei Luo & Yamei Chen & Chengxuan Chen & Ze’ev Ronai & Yubin Zhou & Eytan Ruppin & Leng Han, 2023. "Expanding PROTACtable genome universe of E3 ligases," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Christoph Buhlheller & Theo Sagmeister & Christoph Grininger & Nina Gubensäk & Uwe B. Sleytr & Isabel Usón & Tea Pavkov-Keller, 2024. "SymProFold: Structural prediction of symmetrical biological assemblies," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Cui, Tianxiang & Du, Nanjiang & Yang, Xiaoying & Ding, Shusheng, 2024. "Multi-period portfolio optimization using a deep reinforcement learning hyper-heuristic approach," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    14. Diego Esposito & Jane Dudley-Fraser & Acely Garza-Garcia & Katrin Rittinger, 2022. "Divergent self-association properties of paralogous proteins TRIM2 and TRIM3 regulate their E3 ligase activity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Min Yan & Can Huang & Peter Bienstman & Peter Tino & Wei Lin & Jie Sun, 2024. "Emerging opportunities and challenges for the future of reservoir computing," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    16. Xu-Wen Wang & Lorenzo Madeddu & Kerstin Spirohn & Leonardo Martini & Adriano Fazzone & Luca Becchetti & Thomas P. Wytock & István A. Kovács & Olivér M. Balogh & Bettina Benczik & Mátyás Pétervári & Be, 2023. "Assessment of community efforts to advance network-based prediction of protein–protein interactions," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Devlina Chakravarty & Joseph W. Schafer & Ethan A. Chen & Joseph F. Thole & Leslie A. Ronish & Myeongsang Lee & Lauren L. Porter, 2024. "AlphaFold predictions of fold-switched conformations are driven by structure memorization," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Tian Zhu & Merry H. Ma, 2022. "Deriving the Optimal Strategy for the Two Dice Pig Game via Reinforcement Learning," Stats, MDPI, vol. 5(3), pages 1-14, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33729-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.