IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37643-1.html
   My bibliography  Save this article

Trends and variability in the Southern Annular Mode over the Common Era

Author

Listed:
  • Jonathan King

    (University of Arizona
    University of Arizona)

  • Kevin J. Anchukaitis

    (University of Arizona
    University of Arizona
    University of Arizona)

  • Kathryn Allen

    (University of Tasmania
    University of Melbourne
    University of New South Wales)

  • Tessa Vance

    (University of Tasmania)

  • Amy Hessl

    (West Virginia University)

Abstract

The Southern Annular Mode (SAM) is the leading mode of atmospheric variability in the extratropical Southern Hemisphere and has wide ranging effects on ecosystems and societies. Despite the SAM’s importance, paleoclimate reconstructions disagree on its variability and trends over the Common Era, which may be linked to variability in SAM teleconnections and the influence of specific proxies. Here, we use data assimilation with a multi-model prior to reconstruct the SAM over the last 2000 years using temperature and drought-sensitive climate proxies. Our method does not assume a stationary relationship between the SAM and the proxy records and allows us to identify critical paleoclimate records and quantify reconstruction uncertainty through time. We find no evidence for a forced response in SAM variability prior to the 20th century. We do find the modern positive trend falls outside the 2σ range of the prior 2000 years at multidecadal time scales, supporting the inference that the SAM’s positive trend over the last several decades is a response to anthropogenic climate change.

Suggested Citation

  • Jonathan King & Kevin J. Anchukaitis & Kathryn Allen & Tessa Vance & Amy Hessl, 2023. "Trends and variability in the Southern Annular Mode over the Common Era," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37643-1
    DOI: 10.1038/s41467-023-37643-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37643-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37643-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nerilie J. Abram & Robert Mulvaney & Françoise Vimeux & Steven J. Phipps & John Turner & Matthew H. England, 2014. "Evolution of the Southern Annular Mode during the past millennium," Nature Climate Change, Nature, vol. 4(7), pages 564-569, July.
    2. Julie M. Jones & Sarah T. Gille & Hugues Goosse & Nerilie J. Abram & Pablo O. Canziani & Dan J. Charman & Kyle R. Clem & Xavier Crosta & Casimir de Lavergne & Ian Eisenman & Matthew H. England & Ryan , 2016. "Assessing recent trends in high-latitude Southern Hemisphere surface climate," Nature Climate Change, Nature, vol. 6(10), pages 917-926, October.
    3. Ryan L. Fogt & Gareth J. Marshall, 2020. "The Southern Annular Mode: Variability, trends, and climate impacts across the Southern Hemisphere," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(4), July.
    4. Feng Zhu & Julien Emile-Geay & Kevin J. Anchukaitis & Gregory J. Hakim & Andrew T. Wittenberg & Mariano S. Morales & Matthew Toohey & Jonathan King, 2022. "A re-appraisal of the ENSO response to volcanism with paleoclimate data assimilation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Raphael Neukom & Nathan Steiger & Juan José Gómez-Navarro & Jianghao Wang & Johannes P. Werner, 2019. "No evidence for globally coherent warm and cold periods over the preindustrial Common Era," Nature, Nature, vol. 571(7766), pages 550-554, July.
    6. Matthew B. Osman & Jessica E. Tierney & Jiang Zhu & Robert Tardif & Gregory J. Hakim & Jonathan King & Christopher J. Poulsen, 2021. "Globally resolved surface temperatures since the Last Glacial Maximum," Nature, Nature, vol. 599(7884), pages 239-244, November.
    7. M. Sigl & M. Winstrup & J. R. McConnell & K. C. Welten & G. Plunkett & F. Ludlow & U. Büntgen & M. Caffee & N. Chellman & D. Dahl-Jensen & H. Fischer & S. Kipfstuhl & C. Kostick & O. J. Maselli & F. M, 2015. "Timing and climate forcing of volcanic eruptions for the past 2,500 years," Nature, Nature, vol. 523(7562), pages 543-549, July.
    8. Jessica E. Tierney & Jiang Zhu & Jonathan King & Steven B. Malevich & Gregory J. Hakim & Christopher J. Poulsen, 2020. "Glacial cooling and climate sensitivity revisited," Nature, Nature, vol. 584(7822), pages 569-573, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Cartapanis & Lukas Jonkers & Paola Moffa-Sanchez & Samuel L. Jaccard & Anne Vernal, 2022. "Complex spatio-temporal structure of the Holocene Thermal Maximum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Fei Liu & Chaochao Gao & Jing Chai & Alan Robock & Bin Wang & Jinbao Li & Xu Zhang & Gang Huang & Wenjie Dong, 2022. "Tropical volcanism enhanced the East Asian summer monsoon during the last millennium," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Lukas Reichen & Angela-Maria Burgdorf & Stefan Brönnimann & Jörg Franke & Ralf Hand & Veronika Valler & Eric Samakinwa & Yuri Brugnara & This Rutishauser, 2022. "A decade of cold Eurasian winters reconstructed for the early 19th century," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Feng Wang & Dominique Arseneault & Étienne Boucher & Fabio Gennaretti & Shulong Yu & Tongwen Zhang, 2022. "Tropical volcanoes synchronize eastern Canada with Northern Hemisphere millennial temperature variability," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. M. H. Løland & Y. Krüger & A. Fernandez & F. Buckingham & S. A. Carolin & H. Sodemann & J. F. Adkins & K. M. Cobb & A. N. Meckler, 2022. "Evolution of tropical land temperature across the last glacial termination," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Anne Dallmeyer & Thomas Kleinen & Martin Claussen & Nils Weitzel & Xianyong Cao & Ulrike Herzschuh, 2022. "The deglacial forest conundrum," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Mads Dømgaard & Anders Schomacker & Elisabeth Isaksson & Romain Millan & Flora Huiban & Amaury Dehecq & Amanda Fleischer & Geir Moholdt & Jonas K. Andersen & Anders A. Bjørk, 2024. "Early aerial expedition photos reveal 85 years of glacier growth and stability in East Antarctica," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Zhi-Ping Zhong & Jingjie Du & Stephan Köstlbacher & Petra Pjevac & Sandi Orlić & Matthew B. Sullivan, 2024. "Viral potential to modulate microbial methane metabolism varies by habitat," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Jinmeng Lee & Xiaojun Yin & Honghui Zhu, 2024. "Spatial Optimization of Land Use Allocation Based on the Trade-off of Carbon Mitigation and Economic Benefits: A Study in Tianshan North Slope Urban Agglomeration," Land, MDPI, vol. 13(6), pages 1-18, June.
    10. Liu, Jin & Li, Rui & Li, Shuo & Meucci, Alberto & Young, Ian R., 2024. "Increasing wave power due to global climate change and intensification of Antarctic Oscillation," Applied Energy, Elsevier, vol. 358(C).
    11. Manuel O. Gutierrez-Villanueva & Teresa K. Chereskin & Janet Sprintall, 2023. "Compensating transport trends in the Drake Passage frontal regions yield no acceleration in net transport," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Nicholas P. McKay & Darrell S. Kaufman & Stéphanie H. Arcusa & Hannah R. Kolus & David C. Edge & Michael P. Erb & Chris L. Hancock & Cody C. Routson & Maurycy Żarczyński & Leah P. Marshall & Georgia K, 2024. "The 4.2 ka event is not remarkable in the context of Holocene climate variability," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Lixiong Xiang & Xiaozhong Huang & Mingjie Sun & Virginia N. Panizzo & Chong Huang & Min Zheng & Xuemei Chen & Fahu Chen, 2023. "Prehistoric population expansion in Central Asia promoted by the Altai Holocene Climatic Optimum," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Jessica Picas & Stefan Grab, 2020. "Potential impacts of major nineteenth century volcanic eruptions on temperature over Cape Town, South Africa: 1834–1899," Climatic Change, Springer, vol. 159(4), pages 523-544, April.
    15. Ryan L. Fogt & Gareth J. Marshall, 2020. "The Southern Annular Mode: Variability, trends, and climate impacts across the Southern Hemisphere," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(4), July.
    16. Zolghadr-Asli, Babak & McIntyre, Neil & Djordjevic, Slobodan & Farmani, Raziyeh & Pagliero, Liliana, 2023. "The sustainability of desalination as a remedy to the water crisis in the agriculture sector: An analysis from the climate-water-energy-food nexus perspective," Agricultural Water Management, Elsevier, vol. 286(C).
    17. Siti Nur Fatehah Radzi & Kamisah Osman & Mohd Nizam Mohd Said, 2022. "Progressing towards Global Citizenship and a Sustainable Nation: Pillars of Climate Change Education and Actions," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    18. Jon Camuera & Francisco J. Jiménez-Espejo & José Soto-Chica & Gonzalo Jiménez-Moreno & Antonio García-Alix & María J. Ramos-Román & Leena Ruha & Manuel Castro-Priego, 2023. "Drought as a possible contributor to the Visigothic Kingdom crisis and Islamic expansion in the Iberian Peninsula," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Simon L. L. Michel & Didier Swingedouw & Pablo Ortega & Guillaume Gastineau & Juliette Mignot & Gerard McCarthy & Myriam Khodri, 2022. "Early warning signal for a tipping point suggested by a millennial Atlantic Multidecadal Variability reconstruction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Adrián Cardil & Marcos Rodrigues & Mario Tapia & Renaud Barbero & Joaquin Ramírez & Cathelijne R. Stoof & Carlos Alberto Silva & Midhun Mohan & Sergio de-Miguel, 2023. "Climate teleconnections modulate global burned area," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37643-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.