IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33362-1.html
   My bibliography  Save this article

Complex spatio-temporal structure of the Holocene Thermal Maximum

Author

Listed:
  • Olivier Cartapanis

    (CEREGE, Aix Marseille Université, CNRS, IRD, INRAE, Coll. France, Technopole Arbois)

  • Lukas Jonkers

    (University of Bremen)

  • Paola Moffa-Sanchez

    (Durham University)

  • Samuel L. Jaccard

    (University of Lausanne
    University of Bern)

  • Anne Vernal

    (Geotop, Université du Québec à Montréal)

Abstract

Inconsistencies between Holocene climate reconstructions and numerical model simulations question the robustness of climate models and proxy temperature records. Climate reconstructions suggest an early-middle Holocene Thermal Maximum (HTM) followed by gradual cooling, whereas climate models indicate continuous warming. This discrepancy either implies seasonal biases in proxy-based climate reconstructions, or that the climate model sensitivity to forcings and feedbacks needs to be reevaluated. Here, we analyze a global database of Holocene paleotemperature records to investigate the spatiotemporal structure of the HTM. Continental proxy records at mid and high latitudes of the Northern Hemisphere portray a “classic” HTM (8–4 ka). In contrast, marine proxy records from the same latitudes reveal an earlier HTM (11–7ka), while a clear temperature anomaly is missing in the tropics. The results indicate a heterogeneous response to climate forcing and highlight the lack of globally synchronous HTM.

Suggested Citation

  • Olivier Cartapanis & Lukas Jonkers & Paola Moffa-Sanchez & Samuel L. Jaccard & Anne Vernal, 2022. "Complex spatio-temporal structure of the Holocene Thermal Maximum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33362-1
    DOI: 10.1038/s41467-022-33362-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33362-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33362-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jürgen Bader & Johann Jungclaus & Natalie Krivova & Stephan Lorenz & Amanda Maycock & Thomas Raddatz & Hauke Schmidt & Matthew Toohey & Chi-Ju Wu & Martin Claussen, 2020. "Global temperature modes shed light on the Holocene temperature conundrum," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Jeremiah Marsicek & Bryan N. Shuman & Patrick J. Bartlein & Sarah L. Shafer & Simon Brewer, 2018. "Reconciling divergent trends and millennial variations in Holocene temperatures," Nature, Nature, vol. 554(7690), pages 92-96, February.
    3. Ulrike Herzschuh & H. John B. Birks & Thomas Laepple & Andrei Andreev & Martin Melles & Julie Brigham-Grette, 2016. "Glacial legacies on interglacial vegetation at the Pliocene-Pleistocene transition in NE Asia," Nature Communications, Nature, vol. 7(1), pages 1-11, September.
    4. Samantha Bova & Yair Rosenthal & Zhengyu Liu & Shital P. Godad & Mi Yan, 2021. "Seasonal origin of the thermal maxima at the Holocene and the last interglacial," Nature, Nature, vol. 589(7843), pages 548-553, January.
    5. Raphael Neukom & Nathan Steiger & Juan José Gómez-Navarro & Jianghao Wang & Johannes P. Werner, 2019. "No evidence for globally coherent warm and cold periods over the preindustrial Common Era," Nature, Nature, vol. 571(7766), pages 550-554, July.
    6. Matthew B. Osman & Jessica E. Tierney & Jiang Zhu & Robert Tardif & Gregory J. Hakim & Jonathan King & Christopher J. Poulsen, 2021. "Globally resolved surface temperatures since the Last Glacial Maximum," Nature, Nature, vol. 599(7884), pages 239-244, November.
    7. Jeremy D. Shakun & Peter U. Clark & Feng He & Shaun A. Marcott & Alan C. Mix & Zhengyu Liu & Bette Otto-Bliesner & Andreas Schmittner & Edouard Bard, 2012. "Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation," Nature, Nature, vol. 484(7392), pages 49-54, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ilaria Tabone & Alexander Robinson & Marisa Montoya & Jorge Alvarez-Solas, 2024. "Holocene thinning in central Greenland controlled by the Northeast Greenland Ice Stream," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Hsun-Ming Hu & Gianluca Marino & Carlos Pérez-Mejías & Christoph Spötl & Yusuke Yokoyama & Jimin Yu & Eelco Rohling & Akihiro Kano & Patrick Ludwig & Joaquim G. Pinto & Véronique Michel & Patricia Val, 2024. "Sustained North Atlantic warming drove anomalously intense MIS 11c interglacial," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenchao Zhang & Haibin Wu & Jun Cheng & Junyan Geng & Qin Li & Yong Sun & Yanyan Yu & Huayu Lu & Zhengtang Guo, 2022. "Holocene seasonal temperature evolution and spatial variability over the Northern Hemisphere landmass," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Jiawei Jiang & Bowen Meng & Huanye Wang & Hu Liu & Mu Song & Yuxin He & Cheng Zhao & Jun Cheng & Guoqiang Chu & Sergey Krivonogov & Weiguo Liu & Zhonghui Liu, 2024. "Spatial patterns of Holocene temperature changes over mid-latitude Eurasia," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Yajie Dong & Naiqin Wu & Fengjiang Li & Dan Zhang & Yueting Zhang & Caiming Shen & Houyuan Lu, 2022. "The Holocene temperature conundrum answered by mollusk records from East Asia," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Lixiong Xiang & Xiaozhong Huang & Mingjie Sun & Virginia N. Panizzo & Chong Huang & Min Zheng & Xuemei Chen & Fahu Chen, 2023. "Prehistoric population expansion in Central Asia promoted by the Altai Holocene Climatic Optimum," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Anne Dallmeyer & Thomas Kleinen & Martin Claussen & Nils Weitzel & Xianyong Cao & Ulrike Herzschuh, 2022. "The deglacial forest conundrum," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Yancheng Zhang & Xufeng Zheng & Deming Kong & Hong Yan & Zhonghui Liu, 2021. "Enhanced North Pacific subtropical gyre circulation during the late Holocene," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. M. H. Løland & Y. Krüger & A. Fernandez & F. Buckingham & S. A. Carolin & H. Sodemann & J. F. Adkins & K. M. Cobb & A. N. Meckler, 2022. "Evolution of tropical land temperature across the last glacial termination," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Jonathan King & Kevin J. Anchukaitis & Kathryn Allen & Tessa Vance & Amy Hessl, 2023. "Trends and variability in the Southern Annular Mode over the Common Era," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Tsai, Bi-Huei & Chang, Chih-Jen & Chang, Chun-Hsien, 2016. "Elucidating the consumption and CO2 emissions of fossil fuels and low-carbon energy in the United States using Lotka–Volterra models," Energy, Elsevier, vol. 100(C), pages 416-424.
    10. Shuai Zhang & Zhoufei Yu & Yue Wang & Xun Gong & Ann Holbourn & Fengming Chang & Heng Liu & Xuhua Cheng & Tiegang Li, 2022. "Thermal coupling of the Indo-Pacific warm pool and Southern Ocean over the past 30,000 years," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Zhi-Ping Zhong & Jingjie Du & Stephan Köstlbacher & Petra Pjevac & Sandi Orlić & Matthew B. Sullivan, 2024. "Viral potential to modulate microbial methane metabolism varies by habitat," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Kotchakarn Nantasaksiri & Patcharawat Charoen-Amornkitt & Takashi Machimura, 2021. "Land Potential Assessment of Napier Grass Plantation for Power Generation in Thailand Using SWAT Model. Model Validation and Parameter Calibration," Energies, MDPI, vol. 14(5), pages 1-15, March.
    13. Jinmeng Lee & Xiaojun Yin & Honghui Zhu, 2024. "Spatial Optimization of Land Use Allocation Based on the Trade-off of Carbon Mitigation and Economic Benefits: A Study in Tianshan North Slope Urban Agglomeration," Land, MDPI, vol. 13(6), pages 1-18, June.
    14. Hongfei Wang & Zhipeng Yu & Jie Zhou & Chengming Li & Ananthanarasimhan Jayanarasimhan & Xiqiang Zhao & Hao Zhang, 2023. "A Scientometric Review of CO 2 Electroreduction Research from 2005 to 2022," Energies, MDPI, vol. 16(2), pages 1-21, January.
    15. Solomon Hsiang & Robert E. Kopp, 2018. "An Economist's Guide to Climate Change Science," Journal of Economic Perspectives, American Economic Association, vol. 32(4), pages 3-32, Fall.
    16. Fernando Goulart & Frédéric Mertens, 2017. "The Late mangos- Is There Any Doubt Humans Are Inducing Climate Change?," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 1(7), pages 2022-2024, December.
    17. Granville Tunnicliffe Wilson & John Haywood & Lynda Petherick, 2022. "Modeling cycles and interdependence in irregularly sampled geophysical time series," Environmetrics, John Wiley & Sons, Ltd., vol. 33(2), March.
    18. Inmaculada Carrasco & Juan Sebastián Castillo-Valero & Carmen Córcoles & Marcos Carchano, 2021. "Greening Wine Exports? Changes in the Carbon Footprint of Spanish Wine Exports," IJERPH, MDPI, vol. 18(17), pages 1-13, August.
    19. Heather M. Stoll & Isabel Cacho & Edward Gasson & Jakub Sliwinski & Oliver Kost & Ana Moreno & Miguel Iglesias & Judit Torner & Carlos Perez-Mejias & Negar Haghipour & Hai Cheng & R. Lawrence Edwards, 2022. "Rapid northern hemisphere ice sheet melting during the penultimate deglaciation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    20. Rial, Rafael Cardoso, 2024. "Biofuels versus climate change: Exploring potentials and challenges in the energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33362-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.