IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50381-2.html
   My bibliography  Save this article

Climate change is associated with higher phytoplankton biomass and longer blooms in the West Antarctic Peninsula

Author

Listed:
  • Afonso Ferreira

    (Campo Grande 016
    Universidade Federal do Rio Grande-FURG)

  • Carlos R. B. Mendes

    (Universidade Federal do Rio Grande-FURG
    Universidade Federal do Rio Grande-FURG
    Universidade Federal do Rio Grande-FURG)

  • Raul R. Costa

    (Universidade Federal do Rio Grande-FURG
    Universidade Federal do Rio Grande-FURG
    Universidade Federal do Rio Grande-FURG)

  • Vanda Brotas

    (Campo Grande 016
    Campo Grande 016
    Prospect Place)

  • Virginia M. Tavano

    (Universidade Federal do Rio Grande-FURG)

  • Catarina V. Guerreiro

    (Campo Grande 016
    Campo Grande 016)

  • Eduardo R. Secchi

    (Universidade Federal do Rio Grande-FURG
    Universidade Federal do Rio Grande-FURG)

  • Ana C. Brito

    (Campo Grande 016
    Campo Grande 016)

Abstract

The Antarctic Peninsula (West Antarctica) marine ecosystem has undergone substantial changes due to climate-induced shifts in atmospheric and oceanic temperatures since the 1950s. Using 25 years of satellite data (1998-2022), this study presents evidence that phytoplankton biomass and bloom phenology in the West Antarctic Peninsula are significantly changing as a response to anthropogenic climate change. Enhanced phytoplankton biomass was observed along the West Antarctic Peninsula, particularly in the early austral autumn, resulting in longer blooms. Long-term sea ice decline was identified as the main driver enabling phytoplankton growth in early spring and autumn, in parallel with a recent intensification of the Southern Annular Mode (2010-ongoing), which was observed to influence regional variability. Our findings contribute to the understanding of the complex interplay between environmental changes and phytoplankton responses in this climatically key region of the Southern Ocean and raise important questions regarding the far-reaching consequences that these ecological changes may have on global carbon sequestration and Antarctic food webs in the future.

Suggested Citation

  • Afonso Ferreira & Carlos R. B. Mendes & Raul R. Costa & Vanda Brotas & Virginia M. Tavano & Catarina V. Guerreiro & Eduardo R. Secchi & Ana C. Brito, 2024. "Climate change is associated with higher phytoplankton biomass and longer blooms in the West Antarctic Peninsula," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50381-2
    DOI: 10.1038/s41467-024-50381-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50381-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50381-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sandy J. Thomalla & Sarah-Anne Nicholson & Thomas J. Ryan-Keogh & Marié E. Smith, 2023. "Widespread changes in Southern Ocean phytoplankton blooms linked to climate drivers," Nature Climate Change, Nature, vol. 13(9), pages 975-984, September.
    2. Michael S. Brown & David R. Munro & Colette J. Feehan & Colm Sweeney & Hugh W. Ducklow & Oscar M. Schofield, 2019. "Enhanced oceanic CO2 uptake along the rapidly changing West Antarctic Peninsula," Nature Climate Change, Nature, vol. 9(9), pages 678-683, September.
    3. Ryan L. Fogt & Gareth J. Marshall, 2020. "The Southern Annular Mode: Variability, trends, and climate impacts across the Southern Hemisphere," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(4), July.
    4. Yajuan Lin & Carly Moreno & Adrian Marchetti & Hugh Ducklow & Oscar Schofield & Erwan Delage & Michael Meredith & Zuchuan Li & Damien Eveillard & Samuel Chaffron & Nicolas Cassar, 2021. "Decline in plankton diversity and carbon flux with reduced sea ice extent along the Western Antarctic Peninsula," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Daniel G. Boyce & Marlon R. Lewis & Boris Worm, 2010. "Global phytoplankton decline over the past century," Nature, Nature, vol. 466(7306), pages 591-596, July.
    6. Sébastien Moreau & Philip W. Boyd & Peter G. Strutton, 2020. "Remote assessment of the fate of phytoplankton in the Southern Ocean sea-ice zone," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    7. Angus Atkinson & Simeon L. Hill & Evgeny A. Pakhomov & Volker Siegel & Christian S. Reiss & Valerie J. Loeb & Deborah K. Steinberg & Katrin Schmidt & Geraint A. Tarling & Laura Gerrish & Sévrine F. Sa, 2019. "Krill (Euphausia superba) distribution contracts southward during rapid regional warming," Nature Climate Change, Nature, vol. 9(2), pages 142-147, February.
    8. John Turner & Hua Lu & Ian White & John C. King & Tony Phillips & J. Scott Hosking & Thomas J. Bracegirdle & Gareth J. Marshall & Robert Mulvaney & Pranab Deb, 2016. "Absence of 21st century warming on Antarctic Peninsula consistent with natural variability," Nature, Nature, vol. 535(7612), pages 411-415, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patara, Lavinia & Vichi, Marcello & Masina, Simona, 2012. "Impacts of natural and anthropogenic climate variations on North Pacific plankton in an Earth System Model," Ecological Modelling, Elsevier, vol. 244(C), pages 132-147.
    2. Moreno Bevilacqua & Alfredo Alegria & Daira Velandia & Emilio Porcu, 2016. "Composite Likelihood Inference for Multivariate Gaussian Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 448-469, September.
    3. Per Unneberg & Mårten Larsson & Anna Olsson & Ola Wallerman & Anna Petri & Ignas Bunikis & Olga Vinnere Pettersson & Chiara Papetti & Astthor Gislason & Henrik Glenner & Joan E. Cartes & Leocadio Blan, 2024. "Ecological genomics in the Northern krill uncovers loci for local adaptation across ocean basins," Nature Communications, Nature, vol. 15(1), pages 1-29, December.
    4. Malone, Thomas C. & DiGiacomo, Paul M. & Gonçalves, Emanuel & Knap, Anthony H. & Talaue-McManus, Liana & de Mora, Stephen, 2014. "A global ocean observing system framework for sustainable development," Marine Policy, Elsevier, vol. 43(C), pages 262-272.
    5. Tahmina Ajmal & Fazeel Mohammed & Martin S. Goodchild & Jipsy Sudarsanan & Sarah Halse, 2024. "Mitigating the Impact of Harmful Algal Blooms on Aquaculture Using Technological Interventions: Case Study on a South African Farm," Sustainability, MDPI, vol. 16(9), pages 1-15, April.
    6. Liu, Jin & Li, Rui & Li, Shuo & Meucci, Alberto & Young, Ian R., 2024. "Increasing wave power due to global climate change and intensification of Antarctic Oscillation," Applied Energy, Elsevier, vol. 358(C).
    7. J Timothy Wootton & Catherine A Pfister, 2012. "Carbon System Measurements and Potential Climatic Drivers at a Site of Rapidly Declining Ocean pH," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-11, December.
    8. Manuel O. Gutierrez-Villanueva & Teresa K. Chereskin & Janet Sprintall, 2023. "Compensating transport trends in the Drake Passage frontal regions yield no acceleration in net transport," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Chin-Hsien Cheng & Simon A. T. Redfern, 2022. "Impact of interannual and multidecadal trends on methane-climate feedbacks and sensitivity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Mattei, F. & Buonocore, E. & Franzese, P.P. & Scardi, M., 2021. "Global assessment of marine phytoplankton primary production: Integrating machine learning and environmental accounting models," Ecological Modelling, Elsevier, vol. 451(C).
    11. Jianhui Bai & Xuemei Zong & Yaoming Ma & Binbin Wang & Chuanfeng Zhao & Yikung Yang & Jie Guang & Zhiyuan Cong & Kaili Li & Tao Song, 2022. "Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma," IJERPH, MDPI, vol. 19(15), pages 1-24, July.
    12. Léo Lacour & Joan Llort & Nathan Briggs & Peter G. Strutton & Philip W. Boyd, 2023. "Seasonality of downward carbon export in the Pacific Southern Ocean revealed by multi-year robotic observations," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Katherine A. Crichton & Jamie D. Wilson & Andy Ridgwell & Flavia Boscolo-Galazzo & Eleanor H. John & Bridget S. Wade & Paul N. Pearson, 2023. "What the geological past can tell us about the future of the ocean’s twilight zone," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Nora-Charlotte Pauli & Clara M. Flintrop & Christian Konrad & Evgeny A. Pakhomov & Steffen Swoboda & Florian Koch & Xin-Liang Wang & Ji-Chang Zhang & Andrew S. Brierley & Matteo Bernasconi & Bettina M, 2021. "Krill and salp faecal pellets contribute equally to the carbon flux at the Antarctic Peninsula," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    15. M. S. Clark & J. I. Hoffman & L. S. Peck & L. Bargelloni & D. Gande & C. Havermans & B. Meyer & T. Patarnello & T. Phillips & K. R. Stoof-Leichsenring & D. L. J. Vendrami & A. Beck & G. Collins & M. W, 2023. "Multi-omics for studying and understanding polar life," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Jianhui Bai & Xuemei Zong & Christian Lanconelli & Angelo Lupi & Amelie Driemel & Vito Vitale & Kaili Li & Tao Song, 2022. "Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica)," IJERPH, MDPI, vol. 19(5), pages 1-30, March.
    17. Adrián Cardil & Marcos Rodrigues & Mario Tapia & Renaud Barbero & Joaquin Ramírez & Cathelijne R. Stoof & Carlos Alberto Silva & Midhun Mohan & Sergio de-Miguel, 2023. "Climate teleconnections modulate global burned area," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Vitul Agarwal & Jonathan Chávez-Casillas & Keisuke Inomura & Colleen B. Mouw, 2024. "Patterns in the temporal complexity of global chlorophyll concentration," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. Qian Feng & Linyao Dong & Jingjun Liu & Honghu Liu, 2023. "Detection Framework of Abrupt Changes and Trends in Rainfall Erosivity in Three Gorges Reservoir, China," Sustainability, MDPI, vol. 15(3), pages 1-15, January.
    20. Han, Yue & Zhou, Yuntao, 2022. "Investigating biophysical control of marine phytoplankton dynamics via Bayesian mechanistic modeling," Ecological Modelling, Elsevier, vol. 474(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50381-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.