IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v307y2024ics0360544224022862.html
   My bibliography  Save this article

Potential of hydrogen and thermal storage in the long-term transition of the power sector: A case study of China

Author

Listed:
  • Li, Zheng
  • Du, Binglin
  • Petersen, Nils
  • Liu, Pei
  • Wirsum, Manfred

Abstract

Hydrogen and thermal storage can reduce cost of long-term and large-scale energy storage with high efficiency and low or even zero carbon emissions. Their potential in the low-carbon transition pathway of an energy system with rapid growth of energy demand, large shifting of energy supply structure and limited investment budget remains unclear. A long-term power generation planning model is proposed in this paper, featuring detailed technical and economic characteristics of hydrogen and thermal storage. The power supply system of China is selected as a case study, due to its urgent need for low-carbon transition and complex spatial characteristics. Results show that the application of hydrogen and thermal storage can benefit the development of volatile renewable power generation technologies, facilitate the transition towards zero or even negative carbon emissions while simultaneously reducing power supply costs. Hydrogen is expected to be mainly produced in spring and consumed in summer while heat is expected to be primarily generated in autumn and consumed in winter. Shifting from thermal storage to hydrogen storage might happen around 2050 in accordance to the low-carbon transition progress.

Suggested Citation

  • Li, Zheng & Du, Binglin & Petersen, Nils & Liu, Pei & Wirsum, Manfred, 2024. "Potential of hydrogen and thermal storage in the long-term transition of the power sector: A case study of China," Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224022862
    DOI: 10.1016/j.energy.2024.132512
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224022862
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132512?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dmitrii Bogdanov & Javier Farfan & Kristina Sadovskaia & Arman Aghahosseini & Michael Child & Ashish Gulagi & Ayobami Solomon Oyewo & Larissa Souza Noel Simas Barbosa & Christian Breyer, 2019. "Radical transformation pathway towards sustainable electricity via evolutionary steps," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    2. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Khalili, Siavash & Muñoz-Cerón, Emilio & Breyer, Christian, 2021. "The impact of renewable energy and sector coupling on the pathway towards a sustainable energy system in Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Sorrenti, Ilaria & Harild Rasmussen, Theis Bo & You, Shi & Wu, Qiuwei, 2022. "The role of power-to-X in hybrid renewable energy systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    4. Song, Siming & Li, Tianxiao & Liu, Pei & Li, Zheng, 2022. "The transition pathway of energy supply systems towards carbon neutrality based on a multi-regional energy infrastructure planning approach: A case study of China," Energy, Elsevier, vol. 238(PC).
    5. Chen, Siyuan & Liu, Pei & Li, Zheng, 2020. "Low carbon transition pathway of power sector with high penetration of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    6. Kumar Biswajit Debnath & Monjur Mourshed, 2018. "Author Correction: Challenges and gaps for energy planning models in the developing-world context," Nature Energy, Nature, vol. 3(6), pages 528-528, June.
    7. Moser, Simon & Mayrhofer, Julia & Schmidt, Ralf-Roman & Tichler, Robert, 2018. "Socioeconomic cost-benefit-analysis of seasonal heat storages in district heating systems with industrial waste heat integration," Energy, Elsevier, vol. 160(C), pages 868-874.
    8. Müller, C. & Hoffrichter, A. & Wyrwoll, L. & Schmitt, C. & Trageser, M. & Kulms, T. & Beulertz, D. & Metzger, M. & Duckheim, M. & Huber, M. & Küppers, M. & Most, D. & Paulus, S. & Heger, H.J. & Schnet, 2019. "Modeling framework for planning and operation of multi-modal energy systems in the case of Germany," Applied Energy, Elsevier, vol. 250(C), pages 1132-1146.
    9. Kumar Biswajit Debnath & Monjur Mourshed, 2018. "Challenges and gaps for energy planning models in the developing-world context," Nature Energy, Nature, vol. 3(3), pages 172-184, March.
    10. Li, Yemao & Pan, Wenbiao & Xia, Jianjun & Jiang, Yi, 2019. "Combined heat and water system for long-distance heat transportation," Energy, Elsevier, vol. 172(C), pages 401-408.
    11. Tong, Zheming & Cheng, Zhewu & Tong, Shuiguang, 2021. "A review on the development of compressed air energy storage in China: Technical and economic challenges to commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    13. Nestor A. Sepulveda & Jesse D. Jenkins & Aurora Edington & Dharik S. Mallapragada & Richard K. Lester, 2021. "The design space for long-duration energy storage in decarbonized power systems," Nature Energy, Nature, vol. 6(5), pages 506-516, May.
    14. Qiu, Shuo & Lei, Tian & Wu, Jiangtao & Bi, Shengshan, 2021. "Energy demand and supply planning of China through 2060," Energy, Elsevier, vol. 234(C).
    15. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Haas, Jannik & Muñoz-Cerón, Emilio & Breyer, Christian, 2023. "Synergies of electrical and sectoral integration: Analysing geographical multi-node scenarios with sector coupling variations for a transition towards a fully renewables-based energy system," Energy, Elsevier, vol. 279(C).
    16. Omar J. Guerra, 2021. "Beyond short-duration energy storage," Nature Energy, Nature, vol. 6(5), pages 460-461, May.
    17. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Guo, Zheng & Cheng, Rui & Xu, Zhaofeng & Liu, Pei & Wang, Zhe & Li, Zheng & Jones, Ian & Sun, Yong, 2017. "A multi-region load dispatch model for the long-term optimum planning of China’s electricity sector," Applied Energy, Elsevier, vol. 185(P1), pages 556-572.
    19. Gils, Hans Christian & Gardian, Hedda & Schmugge, Jens, 2021. "Interaction of hydrogen infrastructures with other sector coupling options towards a zero-emission energy system in Germany," Renewable Energy, Elsevier, vol. 180(C), pages 140-156.
    20. Ferrada, Francisco & Babonneau, Frederic & Homem-de-Mello, Tito & Jalil-Vega, Francisca, 2023. "The role of hydrogen for deep decarbonization of energy systems: A Chilean case study," Energy Policy, Elsevier, vol. 177(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Binglin & Liu, Pei & Li, Zheng, 2023. "Coal power plants transition based on joint planning of power and central heating sectors: A case study of China," Energy, Elsevier, vol. 283(C).
    2. Tong, Wenxuan & Lu, Zhengang & Chen, Yanbo & Zhao, Guoliang & Hunt, Julian David & Ren, Dawei & Xu, GuiZhi & Han, Minxiao, 2024. "Typical unit capacity configuration strategies and their control methods of modular gravity energy storage plants," Energy, Elsevier, vol. 295(C).
    3. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Khalili, Siavash & Muñoz-Cerón, Emilio & Breyer, Christian, 2021. "The impact of renewable energy and sector coupling on the pathway towards a sustainable energy system in Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Haas, Jannik & Muñoz-Cerón, Emilio & Breyer, Christian, 2023. "Synergies of electrical and sectoral integration: Analysing geographical multi-node scenarios with sector coupling variations for a transition towards a fully renewables-based energy system," Energy, Elsevier, vol. 279(C).
    5. Song, Siming & Li, Tianxiao & Liu, Pei & Li, Zheng, 2022. "The transition pathway of energy supply systems towards carbon neutrality based on a multi-regional energy infrastructure planning approach: A case study of China," Energy, Elsevier, vol. 238(PC).
    6. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. King, Marcus & Jain, Anjali & Bhakar, Rohit & Mathur, Jyotirmay & Wang, Jihong, 2021. "Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in India and the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    8. Pan, Xunzhang & Ma, Xueqing & Zhang, Yanru & Shao, Tianming & Peng, Tianduo & Li, Xiang & Wang, Lining & Chen, Wenying, 2023. "Implications of carbon neutrality for power sector investments and stranded coal assets in China," Energy Economics, Elsevier, vol. 121(C).
    9. Fu, Lin & Li, Yonghong & Wu, Yanting & Wang, Xiaoyin & Jiang, Yi, 2021. "Low carbon district heating in China in 2025- a district heating mode with low grade waste heat as heat source," Energy, Elsevier, vol. 230(C).
    10. Galván, Antonio & Haas, Jannik & Moreno-Leiva, Simón & Osorio-Aravena, Juan Carlos & Nowak, Wolfgang & Palma-Benke, Rodrigo & Breyer, Christian, 2022. "Exporting sunshine: Planning South America’s electricity transition with green hydrogen," Applied Energy, Elsevier, vol. 325(C).
    11. Paul Wolfram & Qingshi Tu & Niko Heeren & Stefan Pauliuk & Edgar G. Hertwich, 2021. "Material efficiency and climate change mitigation of passenger vehicles," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 494-510, April.
    12. Rusin, Krzysztof & Ochmann, Jakub & Bartela, Łukasz & Rulik, Sebastian & Stanek, Bartosz & Jurczyk, Michał & Waniczek, Sebastian, 2022. "Influence of geometrical dimensions and particle diameter on exergy performance of packed-bed thermal energy storage," Energy, Elsevier, vol. 260(C).
    13. Kılkış, Şiir, 2024. "Urban emissions and land use efficiency scenarios for avoiding increments of global warming," Energy, Elsevier, vol. 307(C).
    14. Sánchez-Pérez, P.A. & Staadecker, Martin & Szinai, Julia & Kurtz, Sarah & Hidalgo-Gonzalez, Patricia, 2022. "Effect of modeled time horizon on quantifying the need for long-duration storage," Applied Energy, Elsevier, vol. 317(C).
    15. Bennett, Jeffrey A. & Fitts, Jeffrey P. & Clarens, Andres F., 2022. "Compressed air energy storage capacity of offshore saline aquifers using isothermal cycling," Applied Energy, Elsevier, vol. 325(C).
    16. Seyid Abdellahi Ebnou Abdem & Jérôme Chenal & El Bachir Diop & Rida Azmi & Meriem Adraoui & Cédric Stéphane Tekouabou Koumetio, 2023. "Using Logistic Regression to Predict Access to Essential Services: Electricity and Internet in Nouakchott, Mauritania," Sustainability, MDPI, vol. 15(23), pages 1-28, November.
    17. Fuchs, J.L. & Tesfamichael, M. & Clube, R. & Tomei, J., 2024. "How does energy modelling influence policymaking? Insights from low- and middle-income countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    18. Hofbauer, Leonhard & McDowall, Will & Pye, Steve, 2022. "Challenges and opportunities for energy system modelling to foster multi-level governance of energy transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    19. Gulam Smdani & Muhammad Remanul Islam & Ahmad Naim Ahmad Yahaya & Sairul Izwan Bin Safie, 2023. "Performance Evaluation Of Advanced Energy Storage Systems: A Review," Energy & Environment, , vol. 34(4), pages 1094-1141, June.
    20. Carlos Roberto de Sousa Costa & Paula Ferreira, 2023. "A Review on the Internalization of Externalities in Electricity Generation Expansion Planning," Energies, MDPI, vol. 16(4), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224022862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.