IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v361y2024ics0306261924002952.html
   My bibliography  Save this article

A compact time horizon compression method for planning community integrated energy systems with long-term energy storage

Author

Listed:
  • Lei, Zijian
  • Yu, Hao
  • Li, Peng
  • Ji, Haoran
  • Yan, Jinyue
  • Song, Guanyu
  • Wang, Chengshan

Abstract

Long-term energy storage (LTES), such as hydrogen storage, has attracted significant attention due to its outstanding performance in storing energy over extended durations and seasonal balancing of power generation and consumption. However, planning for LTES usually necessitates the comprehensive coverage of its whole operation cycle, spanning from days to months, making the issue complex and intractable. To simplify the planning of a community integrated energy system (CIES) with LTES, this study proposes a time horizon compression (THC) method and formulates a concise long-term planning model for CIES with compressed time horizons. Then, robust optimization method with a budget uncertainty set is employed to develop a robust THC model, aimed at addressing data uncertainties in CIES planning. The proposed robust THC model is implemented in the planning of a CIES with high penetration of renewable energy sources, with the objective of minimizing the total annual cost. The results demonstrate that the proposed model can efficiently solve the complex CIES planning problem, resulting in a 42.77% acceleration in optimization speed. Additionally, the diversity and differentiation in THC configurations is investigated to enhance the implementation of THC in long-term CIES planning. The effectiveness of solution robustness and the significant effects of LTES on CIES are analyzed and validated in the case study.

Suggested Citation

  • Lei, Zijian & Yu, Hao & Li, Peng & Ji, Haoran & Yan, Jinyue & Song, Guanyu & Wang, Chengshan, 2024. "A compact time horizon compression method for planning community integrated energy systems with long-term energy storage," Applied Energy, Elsevier, vol. 361(C).
  • Handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002952
    DOI: 10.1016/j.apenergy.2024.122912
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924002952
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122912?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
    2. Pinel, Patrice & Cruickshank, Cynthia A. & Beausoleil-Morrison, Ian & Wills, Adam, 2011. "A review of available methods for seasonal storage of solar thermal energy in residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3341-3359, September.
    3. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    4. Gabrielli, Paolo & Gazzani, Matteo & Martelli, Emanuele & Mazzotti, Marco, 2018. "Optimal design of multi-energy systems with seasonal storage," Applied Energy, Elsevier, vol. 219(C), pages 408-424.
    5. Petkov, Ivalin & Gabrielli, Paolo, 2020. "Power-to-hydrogen as seasonal energy storage: an uncertainty analysis for optimal design of low-carbon multi-energy systems," Applied Energy, Elsevier, vol. 274(C).
    6. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    7. Wang, Chengshan & Lv, Chaoxian & Li, Peng & Song, Guanyu & Li, Shuquan & Xu, Xiandong & Wu, Jianzhong, 2018. "Modeling and optimal operation of community integrated energy systems: A case study from China," Applied Energy, Elsevier, vol. 230(C), pages 1242-1254.
    8. Renaldi, Renaldi & Friedrich, Daniel, 2017. "Multiple time grids in operational optimisation of energy systems with short- and long-term thermal energy storage," Energy, Elsevier, vol. 133(C), pages 784-795.
    9. Ren, Hongbo & Gao, Weijun, 2010. "A MILP model for integrated plan and evaluation of distributed energy systems," Applied Energy, Elsevier, vol. 87(3), pages 1001-1014, March.
    10. Gabrielli, Paolo & Fürer, Florian & Mavromatidis, Georgios & Mazzotti, Marco, 2019. "Robust and optimal design of multi-energy systems with seasonal storage through uncertainty analysis," Applied Energy, Elsevier, vol. 238(C), pages 1192-1210.
    11. Kotzur, Leander & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "Time series aggregation for energy system design: Modeling seasonal storage," Applied Energy, Elsevier, vol. 213(C), pages 123-135.
    12. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2016. "Optimising urban energy systems: Simultaneous system sizing, operation and district heating network layout," Energy, Elsevier, vol. 116(P1), pages 619-636.
    13. Abdin, Zainul & Zafaranloo, Ali & Rafiee, Ahmad & Mérida, Walter & Lipiński, Wojciech & Khalilpour, Kaveh R., 2020. "Hydrogen as an energy vector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    14. Li, Peng & Li, Shuang & Yu, Hao & Yan, Jinyue & Ji, Haoran & Wu, Jianzhong & Wang, Chengshan, 2022. "Quantized event-driven simulation for integrated energy systems with hybrid continuous-discrete dynamics," Applied Energy, Elsevier, vol. 307(C).
    15. Gabrielli, Paolo & Gazzani, Matteo & Mazzotti, Marco, 2018. "Electrochemical conversion technologies for optimal design of decentralized multi-energy systems: Modeling framework and technology assessment," Applied Energy, Elsevier, vol. 221(C), pages 557-575.
    16. Omar J. Guerra, 2021. "Beyond short-duration energy storage," Nature Energy, Nature, vol. 6(5), pages 460-461, May.
    17. Petkov, Ivalin & Gabrielli, Paolo & Spokaite, Marija, 2021. "The impact of urban district composition on storage technology reliance: trade-offs between thermal storage, batteries, and power-to-hydrogen," Energy, Elsevier, vol. 224(C).
    18. Wang, Jing & Kang, Lixia & Liu, Yongzhong, 2022. "A multi-objective approach to determine time series aggregation strategies for optimal design of multi-energy systems," Energy, Elsevier, vol. 258(C).
    19. Gabrielli, Paolo & Poluzzi, Alessandro & Kramer, Gert Jan & Spiers, Christopher & Mazzotti, Marco & Gazzani, Matteo, 2020. "Seasonal energy storage for zero-emissions multi-energy systems via underground hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Haoxin & Shan, Zijing & Zhou, Jianli & Xu, Chuanbo & Chen, Wenjun, 2023. "Refined modeling and co-optimization of electric-hydrogen-thermal-gas integrated energy system with hybrid energy storage," Applied Energy, Elsevier, vol. 351(C).
    2. Le, Tay Son & Nguyen, Tuan Ngoc & Bui, Dac-Khuong & Ngo, Tuan Duc, 2023. "Optimal sizing of renewable energy storage: A techno-economic analysis of hydrogen, battery and hybrid systems considering degradation and seasonal storage," Applied Energy, Elsevier, vol. 336(C).
    3. Petkov, Ivalin & Gabrielli, Paolo & Spokaite, Marija, 2021. "The impact of urban district composition on storage technology reliance: trade-offs between thermal storage, batteries, and power-to-hydrogen," Energy, Elsevier, vol. 224(C).
    4. Petkov, Ivalin & Gabrielli, Paolo, 2020. "Power-to-hydrogen as seasonal energy storage: an uncertainty analysis for optimal design of low-carbon multi-energy systems," Applied Energy, Elsevier, vol. 274(C).
    5. Reveron Baecker, Beneharo & Candas, Soner, 2022. "Co-optimizing transmission and active distribution grids to assess demand-side flexibilities of a carbon-neutral German energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    6. Hoffmann, Maximilian & Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron & Kotzur, Leander & Stolten, Detlef, 2021. "Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models," Applied Energy, Elsevier, vol. 304(C).
    7. Christina Papadimitriou & Marialaura Di Somma & Chrysanthos Charalambous & Martina Caliano & Valeria Palladino & Andrés Felipe Cortés Borray & Amaia González-Garrido & Nerea Ruiz & Giorgio Graditi, 2023. "A Comprehensive Review of the Design and Operation Optimization of Energy Hubs and Their Interaction with the Markets and External Networks," Energies, MDPI, vol. 16(10), pages 1-46, May.
    8. Mavromatidis, Georgios & Petkov, Ivalin, 2021. "MANGO: A novel optimization model for the long-term, multi-stage planning of decentralized multi-energy systems," Applied Energy, Elsevier, vol. 288(C).
    9. Gabrielli, Paolo & Fürer, Florian & Mavromatidis, Georgios & Mazzotti, Marco, 2019. "Robust and optimal design of multi-energy systems with seasonal storage through uncertainty analysis," Applied Energy, Elsevier, vol. 238(C), pages 1192-1210.
    10. Mansoor, Muhammad & Stadler, Michael & Zellinger, Michael & Lichtenegger, Klaus & Auer, Hans & Cosic, Armin, 2021. "Optimal planning of thermal energy systems in a microgrid with seasonal storage and piecewise affine cost functions," Energy, Elsevier, vol. 215(PA).
    11. van der Heijde, Bram & Vandermeulen, Annelies & Salenbien, Robbe & Helsen, Lieve, 2019. "Representative days selection for district energy system optimisation: a solar district heating system with seasonal storage," Applied Energy, Elsevier, vol. 248(C), pages 79-94.
    12. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
    13. Wang, Jing & Kang, Lixia & Liu, Yongzhong, 2022. "A multi-objective approach to determine time series aggregation strategies for optimal design of multi-energy systems," Energy, Elsevier, vol. 258(C).
    14. Gabrielli, Paolo & Poluzzi, Alessandro & Kramer, Gert Jan & Spiers, Christopher & Mazzotti, Marco & Gazzani, Matteo, 2020. "Seasonal energy storage for zero-emissions multi-energy systems via underground hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    15. Hoffmann, Maximilian & Kotzur, Leander & Stolten, Detlef, 2022. "The Pareto-optimal temporal aggregation of energy system models," Applied Energy, Elsevier, vol. 315(C).
    16. Teichgraeber, Holger & Brandt, Adam R., 2022. "Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    17. Marzi, Emanuela & Morini, Mirko & Saletti, Costanza & Vouros, Stavros & Zaccaria, Valentina & Kyprianidis, Konstantinos & Gambarotta, Agostino, 2023. "Power-to-Gas for energy system flexibility under uncertainty in demand, production and price," Energy, Elsevier, vol. 284(C).
    18. Cardoso, Gonçalo & Brouhard, Thomas & DeForest, Nicholas & Wang, Dai & Heleno, Miguel & Kotzur, Leander, 2018. "Battery aging in multi-energy microgrid design using mixed integer linear programming," Applied Energy, Elsevier, vol. 231(C), pages 1059-1069.
    19. Brodnicke, Linda & Gabrielli, Paolo & Sansavini, Giovanni, 2023. "Impact of policies on residential multi-energy systems for consumers and prosumers," Applied Energy, Elsevier, vol. 344(C).
    20. Bartolucci, L. & Cordiner, S. & Mulone, V. & Pasquale, S. & Sbarra, A., 2022. "Design and management strategies for low emission building-scale Multi Energy Systems," Energy, Elsevier, vol. 239(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.