IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v187y2023ics1364032123005488.html
   My bibliography  Save this article

Prospects of solar-powered nitrogenous fertilizers

Author

Listed:
  • Srivastava, Nitish
  • Saquib, Mohammad
  • Rajput, Pramod
  • Bhosale, Amit C.
  • Singh, Rhythm
  • Arora, Pratham

Abstract

Nitrogenous fertilizer is integral to the food system for better yield of crops, and urea is the most common one. It requires ammonia as the primary reactant, while ammonia requires hydrogen for its production. Synthesis of these products is based on fossil fuels and is very carbon intensive, and pose many environmental threats. To reduce these, this review aims at understanding major solar energy-based pathways for three scenarios of producing solar fertilizers; producing urea using ammonia synthesized via solar hydrogen through water using thermolysis, photocatalytic, thermochemical, or electrolysis processes; using solar-powered ammonia using nitrogen and air/water by thermochemical, electrochemical, or photoelectrochemical methods; or directly producing urea using solar energy via photocatalytic and electrochemical processes. The potential of solar fertilizers, along with their advantages and disadvantages in agriculture, have also been highlighted. Besides this, an estimate of the land required (percent) to produce urea for all the scenarios using solar energy has been carried out for India with typical values of 0.119–0.130% for hydrogen production, 0.003–0.010% for ammonia and least for urea production. The review of techno-economic analysis and life cycle assessment for different hydrogen and ammonia production methods has been presented, and a comparative life cycle assessment study for certain hydrogen, ammonia, and nitrogenous fertilizer production methods using GaBi software was undertaken. Global warming potential, acidification potential, and eutrophication potential for 1 kg solar urea production were found as 0.092 kg CO2 equivalent, 0.014 mol of H+, and 1.869×10-6 kg phosphate equivalent.

Suggested Citation

  • Srivastava, Nitish & Saquib, Mohammad & Rajput, Pramod & Bhosale, Amit C. & Singh, Rhythm & Arora, Pratham, 2023. "Prospects of solar-powered nitrogenous fertilizers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:rensus:v:187:y:2023:i:c:s1364032123005488
    DOI: 10.1016/j.rser.2023.113691
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123005488
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113691?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic comparison of green ammonia production processes," Applied Energy, Elsevier, vol. 259(C).
    2. Bumb, Balu L. & Johnson, Michael E. & Fuentes, Porfirio A., 2011. "Policy options for improving regional fertilizer markets in West Africa:," IFPRI discussion papers 1084, International Food Policy Research Institute (IFPRI).
    3. Sellami, M.Hassen & Loudiyi, K., 2017. "Electrolytes behavior during hydrogen production by solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1331-1335.
    4. Po-Wei Huang & Marta C. Hatzell, 2022. "Prospects and good experimental practices for photocatalytic ammonia synthesis," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Mastropasqua, Luca & Pecenati, Ilaria & Giostri, Andrea & Campanari, Stefano, 2020. "Solar hydrogen production: Techno-economic analysis of a parabolic dish-supported high-temperature electrolysis system," Applied Energy, Elsevier, vol. 261(C).
    6. Sourafel Girma & Holger Görg, 2016. "Multinationals’ Productivity Advantage: Scale Or Technology?," World Scientific Book Chapters, in: MULTINATIONAL ENTERPRISES AND HOST COUNTRY DEVELOPMENT Volume 53: World Scientific Studies in International Economics, chapter 1, pages 3-15, World Scientific Publishing Co. Pte. Ltd..
    7. Kathrin HASLER & Stefanie BRÖRING & Onno S.W.F. OMTA & Hans-Werner OLFS, 2017. "Eco-innovations in the German fertilizer supply chain: Impact on the carbon footprint of fertilizers," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 63(12), pages 531-544.
    8. Muataz Ali & Fengling Zhou & Kun Chen & Christopher Kotzur & Changlong Xiao & Laure Bourgeois & Xinyi Zhang & Douglas R. MacFarlane, 2016. "Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon," Nature Communications, Nature, vol. 7(1), pages 1-5, September.
    9. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2021. "Techno-economic comparison of 100% renewable urea production processes," Applied Energy, Elsevier, vol. 284(C).
    10. Wei Li & Hui Ren & Ping Chen & Yanyang Wang & Hailong Qi, 2020. "Key Operational Issues on the Integration of Large-Scale Solar Power Generation—A Literature Review," Energies, MDPI, vol. 13(22), pages 1-25, November.
    11. Li, Guang & Zhang, Ke & Yang, Bin & Liu, Fan & Weng, Yujing & Liu, Zheyu & Fang, Yitian, 2019. "Life cycle analysis of a coal to hydrogen process based on ash agglomerating fluidized bed gasification," Energy, Elsevier, vol. 174(C), pages 638-646.
    12. Cinti, Giovanni & Frattini, Domenico & Jannelli, Elio & Desideri, Umberto & Bidini, Gianni, 2017. "Coupling Solid Oxide Electrolyser (SOE) and ammonia production plant," Applied Energy, Elsevier, vol. 192(C), pages 466-476.
    13. Xiaorong Zhu & Xiaocheng Zhou & Yu Jing & Yafei Li, 2021. "Electrochemical synthesis of urea on MBenes," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    14. Ho, Clifford K. & Iverson, Brian D., 2014. "Review of high-temperature central receiver designs for concentrating solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 835-846.
    15. Beltagy, Hani & Semmar, Djaffar & Lehaut, Christophe & Said, Noureddine, 2017. "Theoretical and experimental performance analysis of a Fresnel type solar concentrator," Renewable Energy, Elsevier, vol. 101(C), pages 782-793.
    16. Hughes, J.P. & Clipsham, J. & Chavushoglu, H. & Rowley-Neale, S.J. & Banks, C.E., 2021. "Polymer electrolyte electrolysis: A review of the activity and stability of non-precious metal hydrogen evolution reaction and oxygen evolution reaction catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    17. Gao-Feng Chen & Yifei Yuan & Haifeng Jiang & Shi-Yu Ren & Liang-Xin Ding & Lu Ma & Tianpin Wu & Jun Lu & Haihui Wang, 2020. "Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst," Nature Energy, Nature, vol. 5(8), pages 605-613, August.
    18. McArthur, John W. & McCord, Gordon C., 2017. "Fertilizing growth: Agricultural inputs and their effects in economic development," Journal of Development Economics, Elsevier, vol. 127(C), pages 133-152.
    19. Lowder, Sarah K. & Skoet, Jakob & Raney, Terri, 2016. "The Number, Size, and Distribution of Farms, Smallholder Farms, and Family Farms Worldwide," World Development, Elsevier, vol. 87(C), pages 16-29.
    20. Tyagi, V.V. & Rahim, Nurul A.A. & Rahim, N.A. & Selvaraj, Jeyraj A./L., 2013. "Progress in solar PV technology: Research and achievement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 443-461.
    21. Li, Feng & Yuan, Yupeng & Yan, Xinping & Malekian, Reza & Li, Zhixiong, 2018. "A study on a numerical simulation of the leakage and diffusion of hydrogen in a fuel cell ship," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 177-185.
    22. Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
    23. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    24. Michalsky, Ronald & Parman, Bryon J. & Amanor-Boadu, Vincent & Pfromm, Peter H., 2012. "Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses," Energy, Elsevier, vol. 42(1), pages 251-260.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Wenliang & Wang, Dongliang & Zhou, Huairong & Yang, Yong & Li, Hongwei & Liao, Zuwei & Yang, Siyu & Hong, Xiaodong & Li, Guixian, 2023. "Carbon dioxide from oxy-fuel coal-fired power plant integrated green ammonia for urea synthesis: Process modeling, system analysis, and techno-economic evaluation," Energy, Elsevier, vol. 278(C).
    2. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    3. Zhong, Like & Yao, Erren & Zou, Hansen & Xi, Guang, 2022. "Thermodynamic and economic analysis of a directly solar-driven power-to-methane system by detailed distributed parameter method," Applied Energy, Elsevier, vol. 312(C).
    4. Abbas, R. & Sebastián, A. & Montes, M.J. & Valdés, M., 2018. "Optical features of linear Fresnel collectors with different secondary reflector technologies," Applied Energy, Elsevier, vol. 232(C), pages 386-397.
    5. Calderón, Alejandro & Palacios, Anabel & Barreneche, Camila & Segarra, Mercè & Prieto, Cristina & Rodriguez-Sanchez, Alfonso & Fernández, A. Inés, 2018. "High temperature systems using solid particles as TES and HTF material: A review," Applied Energy, Elsevier, vol. 213(C), pages 100-111.
    6. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    7. Muhammad, Hafiz Ali & Naseem, Mujahid & Kim, Jonghwan & Kim, Sundong & Choi, Yoonseok & Lee, Young Duk, 2024. "Solar hydrogen production: Technoeconomic analysis of a concentrated solar-powered high-temperature electrolysis system," Energy, Elsevier, vol. 298(C).
    8. Nithyanandam, K. & Narayan, A. & Pitchumani, R., 2018. "Analysis and design of a radial waveguide concentrator for concentrated solar thermal applications," Energy, Elsevier, vol. 151(C), pages 940-953.
    9. Yifan Wang & Laurence A. Wright, 2021. "A Comparative Review of Alternative Fuels for the Maritime Sector: Economic, Technology, and Policy Challenges for Clean Energy Implementation," World, MDPI, vol. 2(4), pages 1-26, October.
    10. Cheng, Ze-Dong & Zhao, Xue-Ru & He, Ya-Ling & Qiu, Yu, 2018. "A novel optical optimization model for linear Fresnel reflector concentrators," Renewable Energy, Elsevier, vol. 129(PA), pages 486-499.
    11. Nithyanandam, K. & Deshpande, J. & Pitchumani, R., 2017. "Coupled thermal and optical analysis of a planar waveguide concentrator-receiver," Applied Energy, Elsevier, vol. 208(C), pages 1576-1589.
    12. Padilla, Ricardo Vasquez & Soo Too, Yen Chean & Benito, Regano & Stein, Wes, 2015. "Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers," Applied Energy, Elsevier, vol. 148(C), pages 348-365.
    13. Jia, Teng & Dai, Yanjun & Wang, Ruzhu, 2018. "Refining energy sources in winemaking industry by using solar energy as alternatives for fossil fuels: A review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 278-296.
    14. Royo, Patricia & Ferreira, Víctor J. & López-Sabirón, Ana M. & Ferreira, Germán, 2016. "Hybrid diagnosis to characterise the energy and environmental enhancement of photovoltaic modules using smart materials," Energy, Elsevier, vol. 101(C), pages 174-189.
    15. Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    16. Hookyung Lee & Min-Jung Lee, 2021. "Recent Advances in Ammonia Combustion Technology in Thermal Power Generation System for Carbon Emission Reduction," Energies, MDPI, vol. 14(18), pages 1-29, September.
    17. Xu, Haiyang & Zhang, Le & Wei, ShengJie & Tong, Xuan & Yang, Yue & Ji, Xu, 2024. "A novel solar system for photothermal-assisted electrocatalytic nitrate reduction reaction to ammonia," Renewable Energy, Elsevier, vol. 221(C).
    18. Wen, Du & Aziz, Muhammad, 2022. "Techno-economic analyses of power-to-ammonia-to-power and biomass-to-ammonia-to-power pathways for carbon neutrality scenario," Applied Energy, Elsevier, vol. 319(C).
    19. Conroy, Tim & Collins, Maurice N. & Fisher, James & Grimes, Ronan, 2018. "Thermal and mechanical analysis of a sodium-cooled solar receiver operating under a novel heliostat aiming point strategy," Applied Energy, Elsevier, vol. 230(C), pages 590-614.
    20. George Stamatellos & Tassos Stamatelos, 2022. "Effect of Actual Recuperators’ Effectiveness on the Attainable Efficiency of Supercritical CO 2 Brayton Cycles for Solar Thermal Power Plants," Energies, MDPI, vol. 15(20), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:187:y:2023:i:c:s1364032123005488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.