IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39366-9.html
   My bibliography  Save this article

Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia

Author

Listed:
  • Shuo Zhang

    (Institute of Process Engineering, Chinese Academy of Sciences
    Nanjing University
    Qingdao University of Science and Technology)

  • Jianghua Wu

    (Nanjing University)

  • Mengting Zheng

    (Griffith University)

  • Xin Jin

    (Nanjing University)

  • Zihan Shen

    (Institute of Process Engineering, Chinese Academy of Sciences)

  • Zhonghua Li

    (Nanjing University)

  • Yanjun Wang

    (Nanjing University)

  • Quan Wang

    (Nanjing University)

  • Xuebin Wang

    (Nanjing University)

  • Hui Wei

    (Nanjing University)

  • Jiangwei Zhang

    (Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS))

  • Peng Wang

    (Nanjing University
    University of Warwick)

  • Shanqing Zhang

    (Griffith University)

  • Liyan Yu

    (Qingdao University of Science and Technology)

  • Lifeng Dong

    (Qingdao University of Science and Technology)

  • Qingshan Zhu

    (Institute of Process Engineering, Chinese Academy of Sciences
    University of the Chinese Academy of Sciences)

  • Huigang Zhang

    (Institute of Process Engineering, Chinese Academy of Sciences
    Nanjing University
    University of the Chinese Academy of Sciences)

  • Jun Lu

    (Zhejiang University)

Abstract

Electrochemical conversion of nitrate to ammonia offers an efficient approach to reducing nitrate pollutants and a potential technology for low-temperature and low-pressure ammonia synthesis. However, the process is limited by multiple competing reactions and NO3− adsorption on cathode surfaces. Here, we report a Fe/Cu diatomic catalyst on holey nitrogen-doped graphene which exhibits high catalytic activities and selectivity for ammonia production. The catalyst enables a maximum ammonia Faradaic efficiency of 92.51% (−0.3 V(RHE)) and a high NH3 yield rate of 1.08 mmol h−1 mg−1 (at − 0.5 V(RHE)). Computational and theoretical analysis reveals that a relatively strong interaction between NO3− and Fe/Cu promotes the adsorption and discharge of NO3− anions. Nitrogen-oxygen bonds are also shown to be weakened due to the existence of hetero-atomic dual sites which lowers the overall reaction barriers. The dual-site and hetero-atom strategy in this work provides a flexible design for further catalyst development and expands the electrocatalytic techniques for nitrate reduction and ammonia synthesis.

Suggested Citation

  • Shuo Zhang & Jianghua Wu & Mengting Zheng & Xin Jin & Zihan Shen & Zhonghua Li & Yanjun Wang & Quan Wang & Xuebin Wang & Hui Wei & Jiangwei Zhang & Peng Wang & Shanqing Zhang & Liyan Yu & Lifeng Dong , 2023. "Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39366-9
    DOI: 10.1038/s41467-023-39366-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39366-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39366-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xin Wan & Qingtao Liu & Jieyuan Liu & Shiyuan Liu & Xiaofang Liu & Lirong Zheng & Jiaxiang Shang & Ronghai Yu & Jianglan Shui, 2022. "Iron atom–cluster interactions increase activity and improve durability in Fe–N–C fuel cells," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Zhen-Yu Wu & Mohammadreza Karamad & Xue Yong & Qizheng Huang & David A. Cullen & Peng Zhu & Chuan Xia & Qunfeng Xiao & Mohsen Shakouri & Feng-Yang Chen & Jung Yoon (Timothy) Kim & Yang Xia & Kimberly , 2021. "Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Jin-Cheng Liu & Xue-Lu Ma & Yong Li & Yang-Gang Wang & Hai Xiao & Jun Li, 2018. "Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    4. Min Zhou & Ying Jiang & Guo Wang & Wenjie Wu & Wenxing Chen & Ping Yu & Yuqing Lin & Junjie Mao & Lanqun Mao, 2020. "Single-atom Ni-N4 provides a robust cellular NO sensor," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    5. Gao-Feng Chen & Yifei Yuan & Haifeng Jiang & Shi-Yu Ren & Liang-Xin Ding & Lu Ma & Tianpin Wu & Jun Lu & Haihui Wang, 2020. "Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst," Nature Energy, Nature, vol. 5(8), pages 605-613, August.
    6. Wenhui He & Jian Zhang & Stefan Dieckhöfer & Swapnil Varhade & Ann Cathrin Brix & Anna Lielpetere & Sabine Seisel & João R. C. Junqueira & Wolfgang Schuhmann, 2022. "Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Huishan Shang & Xiangyi Zhou & Juncai Dong & Ang Li & Xu Zhao & Qinghua Liu & Yue Lin & Jiajing Pei & Zhi Li & Zhuoli Jiang & Danni Zhou & Lirong Zheng & Yu Wang & Jing Zhou & Zhengkun Yang & Rui Cao , 2020. "Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    8. Hong Bin Yang & Sung-Fu Hung & Song Liu & Kaidi Yuan & Shu Miao & Liping Zhang & Xiang Huang & Hsin-Yi Wang & Weizheng Cai & Rong Chen & Jiajian Gao & Xiaofeng Yang & Wei Chen & Yanqiang Huang & Hao M, 2018. "Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction," Nature Energy, Nature, vol. 3(2), pages 140-147, February.
    9. Yuan Pan & Yinjuan Chen & Konglin Wu & Zheng Chen & Shoujie Liu & Xing Cao & Weng-Chon Cheong & Tao Meng & Jun Luo & Lirong Zheng & Chenguang Liu & Dingsheng Wang & Qing Peng & Jun Li & Chen Chen, 2019. "Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    10. Jinwei Xu & Xueli Zheng & Zhiping Feng & Zhiyi Lu & Zewen Zhang & William Huang & Yanbin Li & Djordje Vuckovic & Yuanqing Li & Sheng Dai & Guangxu Chen & Kecheng Wang & Hansen Wang & James K. Chen & W, 2021. "Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2," Nature Sustainability, Nature, vol. 4(3), pages 233-241, March.
    11. Zhiping Zeng & Li Yong Gan & Hong Yang & Xiaozhi Su & Jiajian Gao & Wei Liu & Hiroaki Matsumoto & Jun Gong & Junming Zhang & Weizhen Cai & Zheye Zhang & Yibo Yan & Bin Liu & Peng Chen, 2021. "Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinhong Chen & Yumeng Cheng & Bo Zhang & Jia Zhou & Sisi He, 2024. "Gradient-concentration RuCo electrocatalyst for efficient and stable electroreduction of nitrate into ammonia," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eamonn Murphy & Yuanchao Liu & Ivana Matanovic & Martina Rüscher & Ying Huang & Alvin Ly & Shengyuan Guo & Wenjie Zang & Xingxu Yan & Andrea Martini & Janis Timoshenko & Beatriz Roldán Cuenya & Iryna , 2023. "Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Jian Zhang & Thomas Quast & Bashir Eid & Yen-Ting Chen & Ridha Zerdoumi & Stefan Dieckhöfer & João R. C. Junqueira & Sabine Seisel & Wolfgang Schuhmann, 2024. "In-situ electrochemical reconstruction and modulation of adsorbed hydrogen coverage in cobalt/ruthenium-based catalyst boost electroreduction of nitrate to ammonia," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Kui Fan & Wenfu Xie & Jinze Li & Yining Sun & Pengcheng Xu & Yang Tang & Zhenhua Li & Mingfei Shao, 2022. "Active hydrogen boosts electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Xinhong Chen & Yumeng Cheng & Bo Zhang & Jia Zhou & Sisi He, 2024. "Gradient-concentration RuCo electrocatalyst for efficient and stable electroreduction of nitrate into ammonia," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Xiao Zhou & Yuan Min & Changming Zhao & Cai Chen & Ming-Kun Ke & Shi-Lin Xu & Jie-Jie Chen & Yuen Wu & Han-Qing Yu, 2024. "Constructing sulfur and oxygen super-coordinated main-group electrocatalysts for selective and cumulative H2O2 production," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Yuzhu Zhou & Quan Zhou & Hengjie Liu & Wenjie Xu & Zhouxin Wang & Sicong Qiao & Honghe Ding & Dongliang Chen & Junfa Zhu & Zeming Qi & Xiaojun Wu & Qun He & Li Song, 2023. "Asymmetric dinitrogen-coordinated nickel single-atomic sites for efficient CO2 electroreduction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Xiaoran Zhang & Xiaorong Zhu & Shuowen Bo & Chen Chen & Mengyi Qiu & Xiaoxiao Wei & Nihan He & Chao Xie & Wei Chen & Jianyun Zheng & Pinsong Chen & San Ping Jiang & Yafei Li & Qinghua Liu & Shuangyin , 2022. "Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe–Ni catalyst," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Cai Wang & Xiaoyu Wang & Houan Ren & Yilin Zhang & Xiaomei Zhou & Jing Wang & Qingxin Guan & Yuping Liu & Wei Li, 2023. "Combining Fe nanoparticles and pyrrole-type Fe-N4 sites on less-oxygenated carbon supports for electrochemical CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Bocheng Zhang & Zechuan Dai & Yanxu Chen & Mingyu Cheng & Huaikun Zhang & Pingyi Feng & Buqi Ke & Yangyang Zhang & Genqiang Zhang, 2024. "Defect-induced triple synergistic modulation in copper for superior electrochemical ammonia production across broad nitrate concentrations," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Deyou Yu & Licong Xu & Kaixing Fu & Xia Liu & Shanli Wang & Minghua Wu & Wangyang Lu & Chunyu Lv & Jinming Luo, 2024. "Electronic structure modulation of iron sites with fluorine coordination enables ultra-effective H2O2 activation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Jieyuan Li & Ruimin Chen & Jielin Wang & Ying Zhou & Guidong Yang & Fan Dong, 2022. "Subnanometric alkaline-earth oxide clusters for sustainable nitrate to ammonia photosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Juncai Dong & Yangyang Liu & Jiajing Pei & Haijing Li & Shufang Ji & Lei Shi & Yaning Zhang & Can Li & Cheng Tang & Jiangwen Liao & Shiqing Xu & Huabin Zhang & Qi Li & Shenlong Zhao, 2023. "Continuous electroproduction of formate via CO2 reduction on local symmetry-broken single-atom catalysts," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Yizhou Dai & Huan Li & Chuanhao Wang & Weiqing Xue & Menglu Zhang & Donghao Zhao & Jing Xue & Jiawei Li & Laihao Luo & Chunxiao Liu & Xu Li & Peixin Cui & Qiu Jiang & Tingting Zheng & Songqi Gu & Yao , 2023. "Manipulating local coordination of copper single atom catalyst enables efficient CO2-to-CH4 conversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Yang Li & Shisheng Zheng & Hao Liu & Qi Xiong & Haocong Yi & Haibin Yang & Zongwei Mei & Qinghe Zhao & Zu-Wei Yin & Ming Huang & Yuan Lin & Weihong Lai & Shi-Xue Dou & Feng Pan & Shunning Li, 2024. "Sequential co-reduction of nitrate and carbon dioxide enables selective urea electrosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Wenhui He & Jian Zhang & Stefan Dieckhöfer & Swapnil Varhade & Ann Cathrin Brix & Anna Lielpetere & Sabine Seisel & João R. C. Junqueira & Wolfgang Schuhmann, 2022. "Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Jie Dai & Yawen Tong & Long Zhao & Zhiwei Hu & Chien-Te Chen & Chang-Yang Kuo & Guangming Zhan & Jiaxian Wang & Xingyue Zou & Qian Zheng & Wei Hou & Ruizhao Wang & Kaiyuan Wang & Rui Zhao & Xiang-Kui , 2024. "Spin polarized Fe1−Ti pairs for highly efficient electroreduction nitrate to ammonia," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Shengnan Sun & Chencheng Dai & Peng Zhao & Shibo Xi & Yi Ren & Hui Ru Tan & Poh Chong Lim & Ming Lin & Caozheng Diao & Danwei Zhang & Chao Wu & Anke Yu & Jie Cheng Jackson Koh & Wei Ying Lieu & Debbie, 2024. "Spin-related Cu-Co pair to increase electrochemical ammonia generation on high-entropy oxides," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Wanru Liao & Jun Wang & Ganghai Ni & Kang Liu & Changxu Liu & Shanyong Chen & Qiyou Wang & Yingkang Chen & Tao Luo & Xiqing Wang & Yanqiu Wang & Wenzhang Li & Ting-Shan Chan & Chao Ma & Hongmei Li & Y, 2024. "Sustainable conversion of alkaline nitrate to ammonia at activities greater than 2 A cm−2," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Li Zhang & Xiaoju Yang & Qing Yuan & Zhiming Wei & Jie Ding & Tianshu Chu & Chao Rong & Qiao Zhang & Zhenkun Ye & Fu-Zhen Xuan & Yueming Zhai & Bowei Zhang & Xuan Yang, 2023. "Elucidating the structure-stability relationship of Cu single-atom catalysts using operando surface-enhanced infrared absorption spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Siliu Lyu & Chenxi Guo & Jianing Wang & Zhongjian Li & Bin Yang & Lecheng Lei & Liping Wang & Jianping Xiao & Tao Zhang & Yang Hou, 2022. "Exceptional catalytic activity of oxygen evolution reaction via two-dimensional graphene multilayer confined metal-organic frameworks," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39366-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.