IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v245y2022ics0360544222001608.html
   My bibliography  Save this article

Experimental and kinetic modeling study on the ignition characteristics of methyl acrylate and vinyl acetate: Effect of CC double bond

Author

Listed:
  • Li, Chong
  • Zhang, Zhenpeng
  • He, Li
  • Ye, Mingzhi
  • Ning, Hongbo
  • Shang, Yanlei
  • Shi, Jinchun
  • Luo, Sheng-Nian

Abstract

The ignition characteristics of methyl acrylate (MA) and vinyl acetate (VA) are investigated in a heated shock tube at 1176–1618 K, 4–16 atm, and equivalence ratios of 0.5–2.0. The ignition delay times of MA and VA decrease with increasing equivalence ratio and decreasing pressure but pressure has a negligible effect on their ignition at low temperatures. Comparison between ignition delay times of MA and VA as well as their corresponding saturated esters indicates that both saturation and position of CC double bond affect the ignition process. To reveal its chemical kinetics on ignition characteristics of esters, the existing kinetic model of MA is updated and VA model is further constructed based on the updated MA model. The new kinetic models can better reproduce ignition delay times under current experimental conditions. Comparisons and kinetic analyses demonstrate that MA is more active than VA and H-addition and unimolecular decomposition reactions are the major channels consuming fuel molecules. The reactivities of MA and VA are lower than their corresponding saturated esters at φ = 0.5 and 1. With increasing temperature and equivalence ratio, the saturated esters become less active than MA and VA because of low decomposition rate and stable intermediate formations, respectively.

Suggested Citation

  • Li, Chong & Zhang, Zhenpeng & He, Li & Ye, Mingzhi & Ning, Hongbo & Shang, Yanlei & Shi, Jinchun & Luo, Sheng-Nian, 2022. "Experimental and kinetic modeling study on the ignition characteristics of methyl acrylate and vinyl acetate: Effect of CC double bond," Energy, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001608
    DOI: 10.1016/j.energy.2022.123257
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222001608
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123257?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter C. St. John & Yanfei Guan & Yeonjoon Kim & Seonah Kim & Robert S. Paton, 2020. "Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    2. Grana, Roberto & Frassoldati, Alessio & Cuoci, Alberto & Faravelli, Tiziano & Ranzi, Eliseo, 2012. "A wide range kinetic modeling study of pyrolysis and oxidation of methyl butanoate and methyl decanoate. Note I: Lumped kinetic model of methyl butanoate and small methyl esters," Energy, Elsevier, vol. 43(1), pages 124-139.
    3. Verma, Puneet & Sharma, M.P., 2016. "Review of process parameters for biodiesel production from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1063-1071.
    4. Pyl, Steven P. & Van Geem, Kevin M. & Puimège, Philip & Sabbe, Maarten K. & Reyniers, Marie-Françoise & Marin, Guy B., 2012. "A comprehensive study of methyl decanoate pyrolysis," Energy, Elsevier, vol. 43(1), pages 146-160.
    5. Peter C. John & Yanfei Guan & Yeonjoon Kim & Seonah Kim & Robert S. Paton, 2020. "Publisher Correction: Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost," Nature Communications, Nature, vol. 11(1), pages 1-3, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaxin Shi & Zhibin Guo & Qiang Fu & Xinyuan Shen & Zhongming Zhang & Wenjia Sun & Jinqiang Wang & Junliang Sun & Zizhu Zhang & Tong Liu & Zhen Gu & Zhibo Liu, 2023. "Localized nuclear reaction breaks boron drug capsules loaded with immune adjuvants for cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Qing Ma & Yongjun Gao & Bo Sun & Jianlong Du & Hong Zhang & Ding Ma, 2024. "Grave-to-cradle dry reforming of plastics via Joule heating," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Jordan J. Winetrout & Krishan Kanhaiya & Joshua Kemppainen & Pieter J. in ‘t Veld & Geeta Sachdeva & Ravindra Pandey & Behzad Damirchi & Adri Duin & Gregory M. Odegard & Hendrik Heinz, 2024. "Implementing reactivity in molecular dynamics simulations with harmonic force fields," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Keji Yu & Richard A. Dixon & Changqing Duan, 2022. "A role for ascorbate conjugates of (+)-catechin in proanthocyanidin polymerization," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Yuanyuan Jiang & Zongwei Yang & Jiali Guo & Hongzhen Li & Yijing Liu & Yanzhi Guo & Menglong Li & Xuemei Pu, 2021. "Coupling complementary strategy to flexible graph neural network for quick discovery of coformer in diverse co-crystal materials," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    6. Xiaomin Shu & De Zhong & Qian Huang & Leitao Huan & Haohua Huo, 2023. "Site- and enantioselective cross-coupling of saturated N-heterocycles with carboxylic acids by cooperative Ni/photoredox catalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Daimary, Niran & Boruah, Pankaj & Eldiehy, Khalifa S.H. & Pegu, Tapan & Bardhan, Pritam & Bora, Utpal & Mandal, Manabendra & Deka, Dhanapati, 2022. "Musa acuminata peel: A bioresource for bio-oil and by-product utilization as a sustainable source of renewable green catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 187(C), pages 450-462.
    8. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    9. Ambat, Indu & Srivastava, Varsha & Sillanpää, Mika, 2018. "Recent advancement in biodiesel production methodologies using various feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 356-369.
    10. Dhiman, Saurabh Sudha & David, Aditi & Braband, Vanessa W. & Hussein, Abdulmenan & Salem, David R. & Sani, Rajesh K., 2017. "Improved bioethanol production from corn stover: Role of enzymes, inducers and simultaneous product recovery," Applied Energy, Elsevier, vol. 208(C), pages 1420-1429.
    11. Li, Chong & Ye, Mingzhi & Liu, Bo & Shang, Yanlei & Ning, Hongbo & Shi, Jinchun & Luo, Sheng-Nian, 2023. "Shock tube experiments and kinetic modeling of ignition of unsaturated C5 methyl esters," Energy, Elsevier, vol. 284(C).
    12. Ko, Ja Kyong & Lee, Jae Hoon & Jung, Je Hyeong & Lee, Sun-Mi, 2020. "Recent advances and future directions in plant and yeast engineering to improve lignocellulosic biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Shu, Qing & Zou, Wenqiang & He, Jiangfan & Lesmana, Herry & Zhang, Caixia & Zou, Laixi & Wang, Yao, 2019. "Preparation of the F−-SO42-/MWCNTs catalyst and kinetic studies of the biodiesel production via esterification reaction of oleic acid and methanol," Renewable Energy, Elsevier, vol. 135(C), pages 836-845.
    14. Morais, Keli C.C. & Conceição, Daniele & Vargas, José V.C. & Mitchell, David A. & Mariano, André B. & Ordonez, Juan C. & Galli-Terasawa, Lygia Vitoria & Kava, Vanessa M., 2021. "Enhanced microalgae biomass and lipid output for increased biodiesel productivity," Renewable Energy, Elsevier, vol. 163(C), pages 138-145.
    15. Chrysoula M. Michailof & Konstantinos G. Kalogiannis & Themistoklis Sfetsas & Despoina T. Patiaka & Angelos A. Lappas, 2016. "Advanced analytical techniques for bio-oil characterization," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(6), pages 614-639, November.
    16. Tamim, Rustam & Prasetyoko, Didik & Jovita, Stella & Ni'mah, Yatim Lailun & Nugraha, Reva Edra & Holilah, Holilah & Bahruji, Hasliza & Yusop, Rahimi & Asikin-Mijan, Nurul & Jalil, Aishah Abdul & Harta, 2024. "Low temperature pyrolysis of waste cooking oil using marble waste for bio-jet fuel production," Renewable Energy, Elsevier, vol. 232(C).
    17. di Bitonto, Luigi & Reynel-Ávila, Hilda Elizabeth & Mendoza-Castillo, Didilia Ileana & Bonilla-Petriciolet, Adrián & Durán-Valle, Carlos J. & Pastore, Carlo, 2020. "Synthesis and characterization of nanostructured calcium oxides supported onto biochar and their application as catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 160(C), pages 52-66.
    18. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    19. Hajjari, Masoumeh & Tabatabaei, Meisam & Aghbashlo, Mortaza & Ghanavati, Hossein, 2017. "A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 445-464.
    20. Babazadeh, Reza, 2017. "Optimal design and planning of biodiesel supply chain considering non-edible feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1089-1100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.