IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52515-y.html
   My bibliography  Save this article

Grave-to-cradle dry reforming of plastics via Joule heating

Author

Listed:
  • Qing Ma

    (Hebei University)

  • Yongjun Gao

    (Hebei University)

  • Bo Sun

    (Peking University)

  • Jianlong Du

    (Hebei University)

  • Hong Zhang

    (Hebei University)

  • Ding Ma

    (Peking University)

Abstract

Both plastics and CO2 are waste carbon resources, and their accumulation in nature has led to severe environmental pollution. However, simultaneously converting plastic waste and CO2 into value-added chemicals remains a challenge. Here we demonstrate a catalytic reforming process that converts plastics and CO2 into syngas over an electrified FeCrAl heating wire. The temperature of the electrified heating wire can quickly exceed 800 °C, facilitating the decomposition of polyethylene into gaseous hydrocarbons. The high-temperature heating wire promote the CO2 deoxygenation, resulting in the generation of CO, as well as the dehydrogenation of gaseous hydrocarbons. Significantly, the additional O species from CO2 and the carbon species from hydrocarbons can react to form CO, maintaining the high catalytic activity of the electrified heating wire. This novel approach is of paramount to achieving a circular economy in addressing the ongoing environmental crisis caused by the accumulation of plastic waste and excessive CO2 emissions.

Suggested Citation

  • Qing Ma & Yongjun Gao & Bo Sun & Jianlong Du & Hong Zhang & Ding Ma, 2024. "Grave-to-cradle dry reforming of plastics via Joule heating," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52515-y
    DOI: 10.1038/s41467-024-52515-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52515-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52515-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hongyang Chen & Xiao Xu & Changming Fang & Bo Li & Ming Nie, 2021. "Differences in the temperature dependence of wetland CO2 and CH4 emissions vary with water table depth," Nature Climate Change, Nature, vol. 11(9), pages 766-771, September.
    2. V. Tournier & C. M. Topham & A. Gilles & B. David & C. Folgoas & E. Moya-Leclair & E. Kamionka & M.-L. Desrousseaux & H. Texier & S. Gavalda & M. Cot & E. Guémard & M. Dalibey & J. Nomme & G. Cioci & , 2020. "An engineered PET depolymerase to break down and recycle plastic bottles," Nature, Nature, vol. 580(7802), pages 216-219, April.
    3. Peter C. St. John & Yanfei Guan & Yeonjoon Kim & Seonah Kim & Robert S. Paton, 2020. "Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    4. Peter C. John & Yanfei Guan & Yeonjoon Kim & Seonah Kim & Robert S. Paton, 2020. "Publisher Correction: Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost," Nature Communications, Nature, vol. 11(1), pages 1-3, December.
    5. Zou, Jiecheng & Zhao, Lanxun & Hu, Qiang & Yao, Dingding & Yang, Haiping, 2024. "Pyrolysis and catalytic reforming of disposable plastic waste for syngas production with adjustable H2/CO ratio," Applied Energy, Elsevier, vol. 362(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaxin Shi & Zhibin Guo & Qiang Fu & Xinyuan Shen & Zhongming Zhang & Wenjia Sun & Jinqiang Wang & Junliang Sun & Zizhu Zhang & Tong Liu & Zhen Gu & Zhibo Liu, 2023. "Localized nuclear reaction breaks boron drug capsules loaded with immune adjuvants for cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Li, Chong & Zhang, Zhenpeng & He, Li & Ye, Mingzhi & Ning, Hongbo & Shang, Yanlei & Shi, Jinchun & Luo, Sheng-Nian, 2022. "Experimental and kinetic modeling study on the ignition characteristics of methyl acrylate and vinyl acetate: Effect of CC double bond," Energy, Elsevier, vol. 245(C).
    3. Jordan J. Winetrout & Krishan Kanhaiya & Joshua Kemppainen & Pieter J. in ‘t Veld & Geeta Sachdeva & Ravindra Pandey & Behzad Damirchi & Adri Duin & Gregory M. Odegard & Hendrik Heinz, 2024. "Implementing reactivity in molecular dynamics simulations with harmonic force fields," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Keji Yu & Richard A. Dixon & Changqing Duan, 2022. "A role for ascorbate conjugates of (+)-catechin in proanthocyanidin polymerization," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Yuanyuan Jiang & Zongwei Yang & Jiali Guo & Hongzhen Li & Yijing Liu & Yanzhi Guo & Menglong Li & Xuemei Pu, 2021. "Coupling complementary strategy to flexible graph neural network for quick discovery of coformer in diverse co-crystal materials," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    6. Xiaomin Shu & De Zhong & Qian Huang & Leitao Huan & Haohua Huo, 2023. "Site- and enantioselective cross-coupling of saturated N-heterocycles with carboxylic acids by cooperative Ni/photoredox catalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    8. Gui Zhao & Jiayi Lin & Mengying Lu & Lina Li & Pengtao Xu & Xi Liu & Liwei Chen, 2024. "Potential cycling boosts the electrochemical conversion of polyethylene terephthalate-derived alcohol into valuable chemicals," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Yuantao Peng & Jie Yang & Chenqiang Deng & Jin Deng & Li Shen & Yao Fu, 2023. "Acetolysis of waste polyethylene terephthalate for upcycling and life-cycle assessment study," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Iman Ibrahim & Ayat Gamal Ashour & Waleed Zeiada & Nisreen Salem & Mohamed Abdallah, 2024. "A Systematic Review on the Technical Performance and Sustainability of 3D Printing Filaments Using Recycled Plastic," Sustainability, MDPI, vol. 16(18), pages 1-32, September.
    11. Yu Yang & Jian Min & Ting Xue & Pengcheng Jiang & Xin Liu & Rouming Peng & Jian-Wen Huang & Yingying Qu & Xian Li & Ning Ma & Fang-Chang Tsai & Longhai Dai & Qi Zhang & Yingle Liu & Chun-Chi Chen & Re, 2023. "Complete bio-degradation of poly(butylene adipate-co-terephthalate) via engineered cutinases," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Jingjing Cao & Huaxing Liang & Jie Yang & Zhiyang Zhu & Jin Deng & Xiaodong Li & Menachem Elimelech & Xinglin Lu, 2024. "Depolymerization mechanisms and closed-loop assessment in polyester waste recycling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Jun Qi & Yadong Du & Qi Yang & Na Jiang & Jiachun Li & Yi Ma & Yangjun Ma & Xin Zhao & Jieshan Qiu, 2023. "Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Elizabeth L. Bell & Gloria Rosetto & Morgan A. Ingraham & Kelsey J. Ramirez & Clarissa Lincoln & Ryan W. Clarke & Japheth E. Gado & Jacob L. Lilly & Katarzyna H. Kucharzyk & Erika Erickson & Gregg T. , 2024. "Natural diversity screening, assay development, and characterization of nylon-6 enzymatic depolymerization," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Trishnamoni Gautom & Dharmendra Dheeman & Colin Levy & Thomas Butterfield & Guadalupe Alvarez Gonzalez & Philip Roy & Lewis Caiger & Karl Fisher & Linus Johannissen & Neil Dixon, 2021. "Structural basis of terephthalate recognition by solute binding protein TphC," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    16. Gluth, A. & Xu, Z. & Fifield, L.S. & Yang, B., 2022. "Advancing biological processing for valorization of plastic wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    17. Kamali, Ali Reza & Li, Siyuan, 2023. "Molten salt-assisted valorization of waste PET plastics into nanostructured SnO2@terephthalic acid with excellent Li-ion storage performance," Applied Energy, Elsevier, vol. 334(C).
    18. P. Konstantin Richter & Paula Blázquez-Sánchez & Ziyue Zhao & Felipe Engelberger & Christian Wiebeler & Georg Künze & Ronny Frank & Dana Krinke & Emanuele Frezzotti & Yuliia Lihanova & Patricia Falken, 2023. "Structure and function of the metagenomic plastic-degrading polyester hydrolase PHL7 bound to its product," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Gonzalo Nahuel Bidart & David Teze & Charlotte Uldahl Jansen & Eleonora Pasutto & Natalia Putkaradze & Anna-Mamusu Sesay & Folmer Fredslund & Leila Lo Leggio & Olafur Ögmundarson & Sumesh Sukumara & K, 2024. "Chemoenzymatic indican for light-driven denim dyeing," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Yunying Li & Wenjie Fan & Guni Xiang & Zhihao Xu, 2023. "Evaluating the Feedback of the Reservoir Methane Cycle to Climate Warming under Hydrological Uncertainty," Sustainability, MDPI, vol. 15(12), pages 1-14, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52515-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.