IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-35917-2.html
   My bibliography  Save this article

Oncolytic Parapoxvirus induces Gasdermin E-mediated pyroptosis and activates antitumor immunity

Author

Listed:
  • Jing Lin

    (Jilin University)

  • Shihui Sun

    (Jilin University)

  • Kui Zhao

    (Jilin University)

  • Fei Gao

    (Jilin University)

  • Renling Wang

    (Jilin University)

  • Qi Li

    (Jilin University)

  • Yanlong Zhou

    (Jilin University)

  • Jing Zhang

    (Jilin University)

  • Yue Li

    (Jilin University)

  • Xinyue Wang

    (Jilin University)

  • Le Du

    (Jilin University)

  • Shuai Wang

    (Jilin University)

  • Zi Li

    (Jilin University)

  • Huijun Lu

    (Jilin University)

  • Yungang Lan

    (Jilin University)

  • Deguang Song

    (Jilin University)

  • Wei Guo

    (The first hospital of Jilin University)

  • Yujia Chen

    (The first hospital of Jilin University)

  • Feng Gao

    (Jilin University)

  • Yicheng Zhao

    (Changchun University of Chinese Medicine)

  • Rongrong Fan

    (Karolinska Institutet)

  • Jiyu Guan

    (Jilin University)

  • Wenqi He

    (Jilin University)

Abstract

The advantage of oncolytic viruses (OV) in cancer therapy is their dual effect of directly killing tumours while prompting anti-tumour immune response. Oncolytic parapoxvirus ovis (ORFV) and other OVs are thought to induce apoptosis, but apoptosis, being the immunogenically inert compared to other types of cell death, does not explain the highly inflamed microenvironment in OV-challenged tumors. Here we show that ORFV and its recombinant therapeutic derivatives are able to trigger tumor cell pyroptosis via Gasdermin E (GSDME). This effect is especially prominent in GSDME-low tumor cells, in which ORFV-challenge pre-stabilizes GSDME by decreasing its ubiquitination and subsequently initiates pyroptosis. Consistently, GSDME depletion reduces the proportion of intratumoral cytotoxic T lymphocytes, pyroptotic cell death and the success of tumor ORFV virotherapy. In vivo, the OV preferentially accumulates in the tumour upon systemic delivery and elicits pyroptotic tumor killing. Consequentially, ORFV sensitizes immunologically ‘cold’ tumors to checkpoint blockade. This study thus highlights the critical role of GSDME-mediated pyroptosis in oncolytic ORFV-based antitumor immunity and identifies combinatorial cancer therapy strategies.

Suggested Citation

  • Jing Lin & Shihui Sun & Kui Zhao & Fei Gao & Renling Wang & Qi Li & Yanlong Zhou & Jing Zhang & Yue Li & Xinyue Wang & Le Du & Shuai Wang & Zi Li & Huijun Lu & Yungang Lan & Deguang Song & Wei Guo & Y, 2023. "Oncolytic Parapoxvirus induces Gasdermin E-mediated pyroptosis and activates antitumor immunity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35917-2
    DOI: 10.1038/s41467-023-35917-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-35917-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-35917-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guan Wang & Xi Kang & Katherine S. Chen & Tiffany Jehng & Lindsey Jones & Jie Chen & Xue F. Huang & Si-Yi Chen, 2020. "An engineered oncolytic virus expressing PD-L1 inhibitors activates tumor neoantigen-specific T cell responses," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    2. Corey Rogers & Teresa Fernandes-Alnemri & Lindsey Mayes & Diana Alnemri & Gino Cingolani & Emad S. Alnemri, 2017. "Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death," Nature Communications, Nature, vol. 8(1), pages 1-14, April.
    3. Zuqiang Liu & Roshni Ravindranathan & Pawel Kalinski & Z. Sheng Guo & David L. Bartlett, 2017. "Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy," Nature Communications, Nature, vol. 8(1), pages 1-12, April.
    4. Qinyang Wang & Yupeng Wang & Jingjin Ding & Chunhong Wang & Xuehan Zhou & Wenqing Gao & Huanwei Huang & Feng Shao & Zhibo Liu, 2020. "A bioorthogonal system reveals antitumour immune function of pyroptosis," Nature, Nature, vol. 579(7799), pages 421-426, March.
    5. Liping Huang & Yanan Li & Yunai Du & Yiyi Zhang & Xiuxia Wang & Yuan Ding & Xiangliang Yang & Fanling Meng & Jiasheng Tu & Liang Luo & Chunmeng Sun, 2019. "Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    6. Caroline J. Breitbach & James Burke & Derek Jonker & Joe Stephenson & Andrew R. Haas & Laura Q. M. Chow & Jorge Nieva & Tae-Ho Hwang & Anne Moon & Richard Patt & Adina Pelusio & Fabrice Le Boeuf & Joe, 2011. "Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans," Nature, Nature, vol. 477(7362), pages 99-102, September.
    7. Yupeng Wang & Wenqing Gao & Xuyan Shi & Jingjin Ding & Wang Liu & Huabin He & Kun Wang & Feng Shao, 2017. "Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin," Nature, Nature, vol. 547(7661), pages 99-103, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fengxia Ma & Laxman Ghimire & Qian Ren & Yuping Fan & Tong Chen & Arumugam Balasubramanian & Alan Hsu & Fei Liu & Hongbo Yu & Xuemei Xie & Rong Xu & Hongbo R. Luo, 2024. "Gasdermin E dictates inflammatory responses by controlling the mode of neutrophil death," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Shuo Wang & An Song & Jun Xie & Yuan-Yuan Wang & Wen-Da Wang & Meng-Jie Zhang & Zhi-Zhong Wu & Qi-Chao Yang & Hao Li & Junjie Zhang & Zhi-Jun Sun, 2024. "Fn-OMV potentiates ZBP1-mediated PANoptosis triggered by oncolytic HSV-1 to fuel antitumor immunity," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Liang Zhang & An Song & Qi-Chao Yang & Shu-Jin Li & Shuo Wang & Shu-Cheng Wan & Jianwei Sun & Ryan T. K. Kwok & Jacky W. Y. Lam & Hexiang Deng & Ben Zhong Tang & Zhi-Jun Sun, 2023. "Integration of AIEgens into covalent organic frameworks for pyroptosis and ferroptosis primed cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefania A. Mari & Kristyna Pluhackova & Joka Pipercevic & Matthew Leipner & Sebastian Hiller & Andreas Engel & Daniel J. Müller, 2022. "Gasdermin-A3 pore formation propagates along variable pathways," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Xionghui Ding & Hiroto Kambara & Rongxia Guo & Apurva Kanneganti & Maikel Acosta-Zaldívar & Jiajia Li & Fei Liu & Ting Bei & Wanjun Qi & Xuemei Xie & Wenli Han & Ningning Liu & Cunling Zhang & Xiaoyu , 2021. "Inflammasome-mediated GSDMD activation facilitates escape of Candida albicans from macrophages," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    3. Shuo Wang & An Song & Jun Xie & Yuan-Yuan Wang & Wen-Da Wang & Meng-Jie Zhang & Zhi-Zhong Wu & Qi-Chao Yang & Hao Li & Junjie Zhang & Zhi-Jun Sun, 2024. "Fn-OMV potentiates ZBP1-mediated PANoptosis triggered by oncolytic HSV-1 to fuel antitumor immunity," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Zhu, Ligang & Li, Xiang & Xu, Fei & Yin, Zhiyong & Jin, Jun & Liu, Zhilong & Qi, Hong & Shuai, Jianwei, 2022. "Network modeling-based identification of the switching targets between pyroptosis and secondary pyroptosis," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    5. Fengxia Ma & Laxman Ghimire & Qian Ren & Yuping Fan & Tong Chen & Arumugam Balasubramanian & Alan Hsu & Fei Liu & Hongbo Yu & Xuemei Xie & Rong Xu & Hongbo R. Luo, 2024. "Gasdermin E dictates inflammatory responses by controlling the mode of neutrophil death," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Liang Zhang & An Song & Qi-Chao Yang & Shu-Jin Li & Shuo Wang & Shu-Cheng Wan & Jianwei Sun & Ryan T. K. Kwok & Jacky W. Y. Lam & Hexiang Deng & Ben Zhong Tang & Zhi-Jun Sun, 2023. "Integration of AIEgens into covalent organic frameworks for pyroptosis and ferroptosis primed cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Zhaoting Li & Fanyi Mo & Yixin Wang & Wen Li & Yu Chen & Jun Liu & Ting-Jing Chen-Mayfield & Quanyin Hu, 2022. "Enhancing Gasdermin-induced tumor pyroptosis through preventing ESCRT-dependent cell membrane repair augments antitumor immune response," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Joo-Hui Han & Rajendra Karki & R. K. Subbarao Malireddi & Raghvendra Mall & Roman Sarkar & Bhesh Raj Sharma & Jonathon Klein & Harmut Berns & Harshan Pisharath & Shondra M. Pruett-Miller & Sung-Jin Ba, 2024. "NINJ1 mediates inflammatory cell death, PANoptosis, and lethality during infection conditions and heat stress," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Yuan Lu & Wenbo He & Xin Huang & Yu He & Xiaojuan Gou & Xiaoke Liu & Zhe Hu & Weize Xu & Khaista Rahman & Shan Li & Sheng Hu & Jie Luo & Gang Cao, 2021. "Strategies to package recombinant Adeno-Associated Virus expressing the N-terminal gasdermin domain for tumor treatment," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    10. Chaiheon Lee & Mingyu Park & W. C. Bhashini Wijesinghe & Seungjin Na & Chae Gyu Lee & Eunhye Hwang & Gwangsu Yoon & Jeong Kyeong Lee & Deok-Ho Roh & Yoon Hee Kwon & Jihyeon Yang & Sebastian A. Hughes , 2024. "Oxidative photocatalysis on membranes triggers non-canonical pyroptosis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Yuanyuan Wei & Beidi Lan & Tao Zheng & Lin Yang & Xiaoxia Zhang & Lele Cheng & Gulinigaer Tuerhongjiang & Zuyi Yuan & Yue Wu, 2023. "GSDME-mediated pyroptosis promotes the progression and associated inflammation of atherosclerosis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Hanhan Ning & Shan Huang & Yang Lei & Renyong Zhi & Han Yan & Jiaxing Jin & Zhenyu Hu & Kaimin Guo & Jinhua Liu & Jie Yang & Zhe Liu & Yi Ba & Xin Gao & Deqing Hu, 2022. "Enhancer decommissioning by MLL4 ablation elicits dsRNA-interferon signaling and GSDMD-mediated pyroptosis to potentiate anti-tumor immunity," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    13. Kei-ichiro Arimoto & Sayuri Miyauchi & Ty D. Troutman & Yue Zhang & Mengdan Liu & Samuel A. Stoner & Amanda G. Davis & Jun-Bao Fan & Yi-Jou Huang & Ming Yan & Christopher K. Glass & Dong-Er Zhang, 2023. "Expansion of interferon inducible gene pool via USP18 inhibition promotes cancer cell pyroptosis," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    14. Hang Yin & Jian Zheng & Qiuqiu He & Xuan Zhang & Xuzichao Li & Yongjian Ma & Xiao Liang & Jiaqi Gao & Benjamin L. Kocsis & Zhuang Li & Xiang Liu & Neal M. Alto & Long Li & Heng Zhang, 2023. "Insights into the GSDMB-mediated cellular lysis and its targeting by IpaH7.8," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Anja Kopp & Gregor Hagelueken & Isabell Jamitzky & Jonas Moecking & Lisa D. J. Schiffelers & Florian I. Schmidt & Matthias Geyer, 2023. "Pyroptosis inhibiting nanobodies block Gasdermin D pore formation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Yiyi Zhang & Sidan Tian & Liping Huang & Yanan Li & Yuan Lu & Hongyu Li & Guiping Chen & Fanling Meng & Gang L. Liu & Xiangliang Yang & Jiasheng Tu & Chunmeng Sun & Liang Luo, 2022. "Reactive oxygen species-responsive and Raman-traceable hydrogel combining photodynamic and immune therapy for postsurgical cancer treatment," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Zhigui Zuo & Hao Yin & Yu Zhang & Congying Xie & Qinyang Wang, 2023. "A cytotoxic T cell inspired oncolytic nanosystem promotes lytic cell death by lipid peroxidation and elicits antitumor immune responses," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    18. Xianghan Zhang & Jingkai Gao & Yingdi Tang & Jie Yu & Si Si Liew & Chaoqiang Qiao & Yutian Cao & Guohuan Liu & Hongyu Fan & Yuqiong Xia & Jie Tian & Kanyi Pu & Zhongliang Wang, 2022. "Bioorthogonally activatable cyanine dye with torsion-induced disaggregation for in vivo tumor imaging," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Yaxin Shi & Zhibin Guo & Qiang Fu & Xinyuan Shen & Zhongming Zhang & Wenjia Sun & Jinqiang Wang & Junliang Sun & Zizhu Zhang & Tong Liu & Zhen Gu & Zhibo Liu, 2023. "Localized nuclear reaction breaks boron drug capsules loaded with immune adjuvants for cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Xuan Wang & Yingqi Liu & Chencheng Xue & Yan Hu & Yuanyuan Zhao & Kaiyong Cai & Menghuan Li & Zhong Luo, 2022. "A protein-based cGAS-STING nanoagonist enhances T cell-mediated anti-tumor immune responses," Nature Communications, Nature, vol. 13(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35917-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.