IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49675-2.html
   My bibliography  Save this article

PJA1-mediated suppression of pyroptosis as a driver of docetaxel resistance in nasopharyngeal carcinoma

Author

Listed:
  • Sheng-Yan Huang

    (Sun Yat-sen University Cancer Center)

  • Sha Gong

    (Sun Yat-sen University Cancer Center)

  • Yin Zhao

    (Sun Yat-sen University Cancer Center)

  • Ming-Liang Ye

    (Sun Yat-sen University Cancer Center)

  • Jun-Yan Li

    (Sun Yat-sen University Cancer Center)

  • Qing-Mei He

    (Sun Yat-sen University Cancer Center)

  • Han Qiao

    (Sun Yat-sen University Cancer Center)

  • Xi-Rong Tan

    (Sun Yat-sen University Cancer Center)

  • Jing-Yun Wang

    (Sun Yat-sen University Cancer Center)

  • Ye-Lin Liang

    (Sun Yat-sen University Cancer Center)

  • Sai-Wei Huang

    (Sun Yat-sen University Cancer Center)

  • Shi-Wei He

    (Sun Yat-sen University Cancer Center)

  • Ying-Qin Li

    (Sun Yat-sen University Cancer Center)

  • Sha Xu

    (Sun Yat-sen University Cancer Center)

  • Ying-Qing Li

    (Sun Yat-sen University Cancer Center)

  • Na Liu

    (Sun Yat-sen University Cancer Center)

Abstract

Chemoresistance is a main reason for treatment failure in patients with nasopharyngeal carcinoma, but the exact regulatory mechanism underlying chemoresistance in nasopharyngeal carcinoma remains to be elucidated. Here, we identify PJA1 as a key E3 ubiquitin ligase involved in nasopharyngeal carcinoma chemoresistance that is highly expressed in nasopharyngeal carcinoma patients with nonresponse to docetaxel-cisplatin-5-fluorouracil induction chemotherapy. We find that PJA1 facilitates docetaxel resistance by inhibiting GSDME-mediated pyroptosis in nasopharyngeal carcinoma cells. Mechanistically, PJA1 promotes the degradation of the mitochondrial protein PGAM5 by increasing its K48-linked ubiquitination at K88, which further facilitates DRP1 phosphorylation at S637 and reduced mitochondrial reactive oxygen species production, resulting in suppression of GSDME-mediated pyroptosis and the antitumour immune response. PGAM5 knockdown fully restores the docetaxel sensitization effect of PJA1 knockdown. Moreover, pharmacological targeting of PJA1 with the small molecule inhibitor RTA402 enhances the docetaxel sensitivity of nasopharyngeal carcinoma in vitro and in vivo. Clinically, high PJA1 expression indicates inferior survival and poor clinical efficacy of TPF IC in nasopharyngeal carcinoma patients. Our study emphasizes the essential role of E3 ligases in regulating chemoresistance and provides therapeutic strategies for nasopharyngeal carcinoma based on targeting the ubiquitin-proteasome system.

Suggested Citation

  • Sheng-Yan Huang & Sha Gong & Yin Zhao & Ming-Liang Ye & Jun-Yan Li & Qing-Mei He & Han Qiao & Xi-Rong Tan & Jing-Yun Wang & Ye-Lin Liang & Sai-Wei Huang & Shi-Wei He & Ying-Qin Li & Sha Xu & Ying-Qing, 2024. "PJA1-mediated suppression of pyroptosis as a driver of docetaxel resistance in nasopharyngeal carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49675-2
    DOI: 10.1038/s41467-024-49675-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49675-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49675-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Severa Bunda & Pardeep Heir & Julie Metcalf & Annie Si Cong Li & Sameer Agnihotri & Stefan Pusch & Mamatjan Yasin & Mira Li & Kelly Burrell & Sheila Mansouri & Olivia Singh & Mark Wilson & Amir Alamsa, 2019. "CIC protein instability contributes to tumorigenesis in glioblastoma," Nature Communications, Nature, vol. 10(1), pages 1-17, December.
    2. Wei Lu & Senthilkumar S. Karuppagounder & Danielle A. Springer & Michele D. Allen & Lixin Zheng & Brittany Chao & Yan Zhang & Valina L. Dawson & Ted M. Dawson & Michael Lenardo, 2014. "Genetic deficiency of the mitochondrial protein PGAM5 causes a Parkinson’s-like movement disorder," Nature Communications, Nature, vol. 5(1), pages 1-11, December.
    3. Qinyang Wang & Yupeng Wang & Jingjin Ding & Chunhong Wang & Xuehan Zhou & Wenqing Gao & Huanwei Huang & Feng Shao & Zhibo Liu, 2020. "A bioorthogonal system reveals antitumour immune function of pyroptosis," Nature, Nature, vol. 579(7799), pages 421-426, March.
    4. Rajarshi Chakrabarti & Henry N. Higgs, 2021. "Revolutionary view of two ways to split a mitochondrion," Nature, Nature, vol. 593(7859), pages 346-347, May.
    5. Jun-Yan Li & Yin Zhao & Sha Gong & Miao-Miao Wang & Xu Liu & Qing-Mei He & Ying-Qin Li & Sheng-Yan Huang & Han Qiao & Xi-Rong Tan & Ming-Liang Ye & Xun-Hua Zhu & Shi-Wei He & Qian Li & Ye-Lin Liang & , 2023. "TRIM21 inhibits irradiation-induced mitochondrial DNA release and impairs antitumour immunity in nasopharyngeal carcinoma tumour models," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Yupeng Wang & Wenqing Gao & Xuyan Shi & Jingjin Ding & Wang Liu & Huabin He & Kun Wang & Feng Shao, 2017. "Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin," Nature, Nature, vol. 547(7661), pages 99-103, July.
    7. Yang Chen & Yin Zhao & Xiaojing Yang & Xianyue Ren & Shengyan Huang & Sha Gong & Xirong Tan & Junyan Li & Shiwei He & Yingqin Li & Xiaohong Hong & Qian Li & Cong Ding & Xueliang Fang & Jun Ma & Na Liu, 2022. "USP44 regulates irradiation-induced DNA double-strand break repair and suppresses tumorigenesis in nasopharyngeal carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaiheon Lee & Mingyu Park & W. C. Bhashini Wijesinghe & Seungjin Na & Chae Gyu Lee & Eunhye Hwang & Gwangsu Yoon & Jeong Kyeong Lee & Deok-Ho Roh & Yoon Hee Kwon & Jihyeon Yang & Sebastian A. Hughes , 2024. "Oxidative photocatalysis on membranes triggers non-canonical pyroptosis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Liang Zhang & An Song & Qi-Chao Yang & Shu-Jin Li & Shuo Wang & Shu-Cheng Wan & Jianwei Sun & Ryan T. K. Kwok & Jacky W. Y. Lam & Hexiang Deng & Ben Zhong Tang & Zhi-Jun Sun, 2023. "Integration of AIEgens into covalent organic frameworks for pyroptosis and ferroptosis primed cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Zhaoting Li & Fanyi Mo & Yixin Wang & Wen Li & Yu Chen & Jun Liu & Ting-Jing Chen-Mayfield & Quanyin Hu, 2022. "Enhancing Gasdermin-induced tumor pyroptosis through preventing ESCRT-dependent cell membrane repair augments antitumor immune response," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Stefania A. Mari & Kristyna Pluhackova & Joka Pipercevic & Matthew Leipner & Sebastian Hiller & Andreas Engel & Daniel J. Müller, 2022. "Gasdermin-A3 pore formation propagates along variable pathways," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Xionghui Ding & Hiroto Kambara & Rongxia Guo & Apurva Kanneganti & Maikel Acosta-Zaldívar & Jiajia Li & Fei Liu & Ting Bei & Wanjun Qi & Xuemei Xie & Wenli Han & Ningning Liu & Cunling Zhang & Xiaoyu , 2021. "Inflammasome-mediated GSDMD activation facilitates escape of Candida albicans from macrophages," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    6. Jing Lin & Shihui Sun & Kui Zhao & Fei Gao & Renling Wang & Qi Li & Yanlong Zhou & Jing Zhang & Yue Li & Xinyue Wang & Le Du & Shuai Wang & Zi Li & Huijun Lu & Yungang Lan & Deguang Song & Wei Guo & Y, 2023. "Oncolytic Parapoxvirus induces Gasdermin E-mediated pyroptosis and activates antitumor immunity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Yuan Lu & Wenbo He & Xin Huang & Yu He & Xiaojuan Gou & Xiaoke Liu & Zhe Hu & Weize Xu & Khaista Rahman & Shan Li & Sheng Hu & Jie Luo & Gang Cao, 2021. "Strategies to package recombinant Adeno-Associated Virus expressing the N-terminal gasdermin domain for tumor treatment," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    8. Meng Wang & Satoshi Fukushima & Yi-Shuan Sheen & Egle Ramelyte & Noel Cruz-Pacheco & Chenxu Shi & Shanshan Liu & Ishani Banik & Jamie D. Aquino & Martin Sangueza Acosta & Mitchell Levesque & Reinhard , 2024. "The genetic evolution of acral melanoma," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Shuo Wang & An Song & Jun Xie & Yuan-Yuan Wang & Wen-Da Wang & Meng-Jie Zhang & Zhi-Zhong Wu & Qi-Chao Yang & Hao Li & Junjie Zhang & Zhi-Jun Sun, 2024. "Fn-OMV potentiates ZBP1-mediated PANoptosis triggered by oncolytic HSV-1 to fuel antitumor immunity," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Zhigui Zuo & Hao Yin & Yu Zhang & Congying Xie & Qinyang Wang, 2023. "A cytotoxic T cell inspired oncolytic nanosystem promotes lytic cell death by lipid peroxidation and elicits antitumor immune responses," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    11. Jun-Yan Li & Yin Zhao & Sha Gong & Miao-Miao Wang & Xu Liu & Qing-Mei He & Ying-Qin Li & Sheng-Yan Huang & Han Qiao & Xi-Rong Tan & Ming-Liang Ye & Xun-Hua Zhu & Shi-Wei He & Qian Li & Ye-Lin Liang & , 2023. "TRIM21 inhibits irradiation-induced mitochondrial DNA release and impairs antitumour immunity in nasopharyngeal carcinoma tumour models," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Xianghan Zhang & Jingkai Gao & Yingdi Tang & Jie Yu & Si Si Liew & Chaoqiang Qiao & Yutian Cao & Guohuan Liu & Hongyu Fan & Yuqiong Xia & Jie Tian & Kanyi Pu & Zhongliang Wang, 2022. "Bioorthogonally activatable cyanine dye with torsion-induced disaggregation for in vivo tumor imaging," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Boshu Ouyang & Caihua Shan & Shun Shen & Xinnan Dai & Qingwang Chen & Xiaomin Su & Yongbin Cao & Xifeng Qin & Ying He & Siyu Wang & Ruizhe Xu & Ruining Hu & Leming Shi & Tun Lu & Wuli Yang & Shaojun P, 2024. "AI-powered omics-based drug pair discovery for pyroptosis therapy targeting triple-negative breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    14. Zhu, Ligang & Li, Xiang & Xu, Fei & Yin, Zhiyong & Jin, Jun & Liu, Zhilong & Qi, Hong & Shuai, Jianwei, 2022. "Network modeling-based identification of the switching targets between pyroptosis and secondary pyroptosis," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    15. Yuanyuan Wei & Beidi Lan & Tao Zheng & Lin Yang & Xiaoxia Zhang & Lele Cheng & Gulinigaer Tuerhongjiang & Zuyi Yuan & Yue Wu, 2023. "GSDME-mediated pyroptosis promotes the progression and associated inflammation of atherosclerosis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Yaxin Shi & Zhibin Guo & Qiang Fu & Xinyuan Shen & Zhongming Zhang & Wenjia Sun & Jinqiang Wang & Junliang Sun & Zizhu Zhang & Tong Liu & Zhen Gu & Zhibo Liu, 2023. "Localized nuclear reaction breaks boron drug capsules loaded with immune adjuvants for cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Ning Wang & Chao Liu & Yingjie Li & Dongxue Huang & Xinyue Wu & Xiaorong Kou & Xiye Wang & Qinjie Wu & Changyang Gong, 2023. "A cooperative nano-CRISPR scaffold potentiates immunotherapy via activation of tumour-intrinsic pyroptosis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Fengxia Ma & Laxman Ghimire & Qian Ren & Yuping Fan & Tong Chen & Arumugam Balasubramanian & Alan Hsu & Fei Liu & Hongbo Yu & Xuemei Xie & Rong Xu & Hongbo R. Luo, 2024. "Gasdermin E dictates inflammatory responses by controlling the mode of neutrophil death," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    19. Ye-Lin Liang & Yuan Zhang & Xi-Rong Tan & Han Qiao & Song-Ran Liu & Ling-Long Tang & Yan-Ping Mao & Lei Chen & Wen-Fei Li & Guan-Qun Zhou & Yin Zhao & Jun-Yan Li & Qian Li & Sheng-Yan Huang & Sha Gong, 2022. "A lncRNA signature associated with tumor immune heterogeneity predicts distant metastasis in locoregionally advanced nasopharyngeal carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Hanhan Ning & Shan Huang & Yang Lei & Renyong Zhi & Han Yan & Jiaxing Jin & Zhenyu Hu & Kaimin Guo & Jinhua Liu & Jie Yang & Zhe Liu & Yi Ba & Xin Gao & Deqing Hu, 2022. "Enhancer decommissioning by MLL4 ablation elicits dsRNA-interferon signaling and GSDMD-mediated pyroptosis to potentiate anti-tumor immunity," Nature Communications, Nature, vol. 13(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49675-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.