IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v4y2019i6d10.1038_s41560-019-0387-1.html
   My bibliography  Save this article

Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes

Author

Listed:
  • Gui-Liang Xu

    (Argonne National Laboratory)

  • Qiang Liu

    (The Hong Kong University of Science and Technology
    The Hong Kong Polytechnic University)

  • Kenneth K. S. Lau

    (Drexel University)

  • Yuzi Liu

    (Argonne National Laboratory)

  • Xiang Liu

    (Argonne National Laboratory
    Tsinghua University)

  • Han Gao

    (Argonne National Laboratory)

  • Xinwei Zhou

    (Argonne National Laboratory
    Indiana University–Purdue University Indianapolis)

  • Minghao Zhuang

    (Argonne National Laboratory
    The Hong Kong University of Science and Technology)

  • Yang Ren

    (Argonne National Laboratory)

  • Jiadong Li

    (The Hong Kong University of Science and Technology)

  • Minhua Shao

    (The Hong Kong University of Science and Technology)

  • Minggao Ouyang

    (Tsinghua University)

  • Feng Pan

    (Peking University, Shenzhen Graduate School)

  • Zonghai Chen

    (Argonne National Laboratory)

  • Khalil Amine

    (Argonne National Laboratory
    Stanford University)

  • Guohua Chen

    (The Hong Kong Polytechnic University)

Abstract

Despite their relatively high capacity, layered lithium transition metal oxides suffer from crystal and interfacial structural instability under aggressive electrochemical and thermal driving forces, leading to rapid performance degradation and severe safety concerns. Here we report a transformative approach using an oxidative chemical vapour deposition technique to build a protective conductive polymer (poly(3,4-ethylenedioxythiophene)) skin on layered oxide cathode materials. The ultraconformal poly(3,4-ethylenedioxythiophene) skin facilitates the transport of lithium ions and electrons, significantly suppresses the undesired layered to spinel/rock-salt phase transformation and the associated oxygen loss, mitigates intergranular and intragranular mechanical cracking, and effectively stabilizes the cathode–electrolyte interface. This approach remarkably enhances the capacity and thermal stability under high-voltage operation. Building a protective skin at both secondary and primary particle levels of layered oxides offers a promising design strategy for Ni-rich cathodes towards high-energy, long-life and safe lithium-ion batteries.

Suggested Citation

  • Gui-Liang Xu & Qiang Liu & Kenneth K. S. Lau & Yuzi Liu & Xiang Liu & Han Gao & Xinwei Zhou & Minghao Zhuang & Yang Ren & Jiadong Li & Minhua Shao & Minggao Ouyang & Feng Pan & Zonghai Chen & Khalil A, 2019. "Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes," Nature Energy, Nature, vol. 4(6), pages 484-494, June.
  • Handle: RePEc:nat:natene:v:4:y:2019:i:6:d:10.1038_s41560-019-0387-1
    DOI: 10.1038/s41560-019-0387-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-019-0387-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-019-0387-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jung-Hui Kim & Ju-Myung Kim & Seok-Kyu Cho & Nag-Young Kim & Sang-Young Lee, 2022. "Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Minglei Mao & Xiao Ji & Qiyu Wang & Zejing Lin & Meiying Li & Tao Liu & Chengliang Wang & Yong-Sheng Hu & Hong Li & Xuejie Huang & Liquan Chen & Liumin Suo, 2023. "Anion-enrichment interface enables high-voltage anode-free lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Jianwen Liang & Yuanmin Zhu & Xiaona Li & Jing Luo & Sixu Deng & Yang Zhao & Yipeng Sun & Duojie Wu & Yongfeng Hu & Weihan Li & Tsun-Kong Sham & Ruying Li & Meng Gu & Xueliang Sun, 2023. "A gradient oxy-thiophosphate-coated Ni-rich layered oxide cathode for stable all-solid-state Li-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:4:y:2019:i:6:d:10.1038_s41560-019-0387-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.