IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v4y2019i6d10.1038_s41560-019-0407-1.html
   My bibliography  Save this article

Considerations for the scaling-up of water splitting catalysts

Author

Listed:
  • Jakob Kibsgaard

    (Technical University of Denmark)

  • Ib Chorkendorff

    (Technical University of Denmark)

Abstract

A wealth of candidates are being investigated to improve the catalysts found in acidic and alkaline electrolysers. However, attention should be focused on developing stable water oxidation catalysts with improved intrinsic activity — not only increased geometric activity — alongside best practice for data collection.

Suggested Citation

  • Jakob Kibsgaard & Ib Chorkendorff, 2019. "Considerations for the scaling-up of water splitting catalysts," Nature Energy, Nature, vol. 4(6), pages 430-433, June.
  • Handle: RePEc:nat:natene:v:4:y:2019:i:6:d:10.1038_s41560-019-0407-1
    DOI: 10.1038/s41560-019-0407-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-019-0407-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-019-0407-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qian Dang & Haiping Lin & Zhenglong Fan & Lu Ma & Qi Shao & Yujin Ji & Fangfang Zheng & Shize Geng & Shi-Ze Yang & Ningning Kong & Wenxiang Zhu & Youyong Li & Fan Liao & Xiaoqing Huang & Mingwang Shao, 2021. "Iridium metallene oxide for acidic oxygen evolution catalysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Xin Geng & Miquel Vega-Paredes & Zhenyu Wang & Colin Ophus & Pengfei Lu & Yan Ma & Siyuan Zhang & Christina Scheu & Christian H. Liebscher & Baptiste Gault, 2024. "Grain boundary engineering for efficient and durable electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Zhenhua Li & Yifan Yan & Si-Min Xu & Hua Zhou & Ming Xu & Lina Ma & Mingfei Shao & Xianggui Kong & Bin Wang & Lirong Zheng & Haohong Duan, 2022. "Alcohols electrooxidation coupled with H2 production at high current densities promoted by a cooperative catalyst," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Ding Chen & Ruohan Yu & Kesong Yu & Ruihu Lu & Hongyu Zhao & Jixiang Jiao & Youtao Yao & Jiawei Zhu & Jinsong Wu & Shichun Mu, 2024. "Bicontinuous RuO2 nanoreactors for acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Yu Shen & Xiao-Long Zhang & Ming-Rong Qu & Jie Ma & Sheng Zhu & Yu-Lin Min & Min-Rui Gao & Shu-Hong Yu, 2024. "Cr dopant mediates hydroxyl spillover on RuO2 for high-efficiency proton exchange membrane electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Yuannan Wang & Mingcheng Zhang & Zhenye Kang & Lei Shi & Yucheng Shen & Boyuan Tian & Yongcun Zou & Hui Chen & Xiaoxin Zou, 2023. "Nano-metal diborides-supported anode catalyst with strongly coupled TaOx/IrO2 catalytic layer for low-iridium-loading proton exchange membrane electrolyzer," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Lihaokun Chen & Qiucheng Xu & Sebastian Z. Oener & Kevin Fabrizio & Shannon W. Boettcher, 2022. "Design principles for water dissociation catalysts in high-performance bipolar membranes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Shi, Tong & Feng, Hao & Liu, Dong & Zhang, Ying & Li, Qiang, 2022. "High-performance microfluidic electrochemical reactor for efficient hydrogen evolution," Applied Energy, Elsevier, vol. 325(C).
    9. Ruirui Song & Jiuhui Han & Masayuki Okugawa & Rodion Belosludov & Takeshi Wada & Jing Jiang & Daixiu Wei & Akira Kudo & Yuan Tian & Mingwei Chen & Hidemi Kato, 2022. "Ultrafine nanoporous intermetallic catalysts by high-temperature liquid metal dealloying for electrochemical hydrogen production," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Fan Liao & Kui Yin & Yujin Ji & Wenxiang Zhu & Zhenglong Fan & Youyong Li & Jun Zhong & Mingwang Shao & Zhenhui Kang & Qi Shao, 2023. "Iridium oxide nanoribbons with metastable monoclinic phase for highly efficient electrocatalytic oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. López-Fernández, E. & Gómez-Sacedón, C. & Gil-Rostra, J. & Espinós, J.P. & Brey, J. Javier & González-Elipe, A.R. & de Lucas-Consuegra, A. & Yubero, F., 2022. "Optimization of anion exchange membrane water electrolyzers using ionomer-free electrodes," Renewable Energy, Elsevier, vol. 197(C), pages 1183-1191.
    12. Huanyu Jin & Xinyan Liu & Pengfei An & Cheng Tang & Huimin Yu & Qinghua Zhang & Hong-Jie Peng & Lin Gu & Yao Zheng & Taeseup Song & Kenneth Davey & Ungyu Paik & Juncai Dong & Shi-Zhang Qiao, 2023. "Dynamic rhenium dopant boosts ruthenium oxide for durable oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Shouwei Zuo & Zhi-Peng Wu & Deting Xu & Rafia Ahmad & Lirong Zheng & Jing Zhang & Lina Zhao & Wenhuan Huang & Hassan Al Qahtani & Yu Han & Luigi Cavallo & Huabin Zhang, 2024. "Local compressive strain-induced anti-corrosion over isolated Ru-decorated Co3O4 for efficient acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Jialun Gu & Lanxi Li & Youneng Xie & Bo Chen & Fubo Tian & Yanju Wang & Jing Zhong & Junda Shen & Jian Lu, 2023. "Turing structuring with multiple nanotwins to engineer efficient and stable catalysts for hydrogen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Shu-Pei Zeng & Hang Shi & Tian-Yi Dai & Yang Liu & Zi Wen & Gao-Feng Han & Tong-Hui Wang & Wei Zhang & Xing-You Lang & Wei-Tao Zheng & Qing Jiang, 2023. "Lamella-heterostructured nanoporous bimetallic iron-cobalt alloy/oxyhydroxide and cerium oxynitride electrodes as stable catalysts for oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Dafeng Zhang & Mengnan Li & Xue Yong & Haoqiang Song & Geoffrey I. N. Waterhouse & Yunfei Yi & Bingjie Xue & Dongliang Zhang & Baozhong Liu & Siyu Lu, 2023. "Construction of Zn-doped RuO2 nanowires for efficient and stable water oxidation in acidic media," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Chao Feng & Faze Wang & Zhi Liu & Mamiko Nakabayashi & Yequan Xiao & Qiugui Zeng & Jie Fu & Qianbao Wu & Chunhua Cui & Yifan Han & Naoya Shibata & Kazunari Domen & Ian D. Sharp & Yanbo Li, 2021. "A self-healing catalyst for electrocatalytic and photoelectrochemical oxygen evolution in highly alkaline conditions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    18. Changhao Liu & Ningsi Zhang & Yang Li & Rongli Fan & Wenjing Wang & Jianyong Feng & Chen Liu & Jiaou Wang & Weichang Hao & Zhaosheng Li & Zhigang Zou, 2023. "Long-term durability of metastable β-Fe2O3 photoanodes in highly corrosive seawater," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Lingyou Zeng & Zhonglong Zhao & Fan Lv & Zhonghong Xia & Shi-Yu Lu & Jiong Li & Kaian Sun & Kai Wang & Yingjun Sun & Qizheng Huang & Yan Chen & Qinghua Zhang & Lin Gu & Gang Lu & Shaojun Guo, 2022. "Anti-dissolution Pt single site with Pt(OH)(O3)/Co(P) coordination for efficient alkaline water splitting electrolyzer," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:4:y:2019:i:6:d:10.1038_s41560-019-0407-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.