IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46176-0.html
   My bibliography  Save this article

Distance effect of single atoms on stability of cobalt oxide catalysts for acidic oxygen evolution

Author

Listed:
  • Zhirong Zhang

    (University of Science and Technology of China)

  • Chuanyi Jia

    (Institute of Applied Physics, Guizhou Education University)

  • Peiyu Ma

    (University of Science and Technology of China)

  • Chen Feng

    (University of Science and Technology of China)

  • Jin Yang

    (University of Science and Technology of China)

  • Junming Huang

    (University of Science and Technology of China)

  • Jiana Zheng

    (University of Science and Technology of China)

  • Ming Zuo

    (University of Science and Technology of China)

  • Mingkai Liu

    (Anhui University of Technology)

  • Shiming Zhou

    (University of Science and Technology of China)

  • Jie Zeng

    (University of Science and Technology of China
    Anhui University of Technology)

Abstract

Developing efficient and economical electrocatalysts for acidic oxygen evolution reaction (OER) is essential for proton exchange membrane water electrolyzers (PEMWE). Cobalt oxides are considered promising non-precious OER catalysts due to their high activities. However, the severe dissolution of Co atoms in acid media leads to the collapse of crystal structure, which impedes their application in PEMWE. Here, we report that introducing acid-resistant Ir single atoms into the lattice of spinel cobalt oxides can significantly suppress the Co dissolution and keep them highly stable during the acidic OER process. Combining theoretical and experimental studies, we reveal that the stabilizing effect induced by Ir heteroatoms exhibits a strong dependence on the distance of adjacent Ir single atoms, where the OER stability of cobalt oxides continuously improves with decreasing the distance. When the distance reduces to about 0.6 nm, the spinel cobalt oxides present no obvious degradation over a 60-h stability test for acidic OER, suggesting potential for practical applications.

Suggested Citation

  • Zhirong Zhang & Chuanyi Jia & Peiyu Ma & Chen Feng & Jin Yang & Junming Huang & Jiana Zheng & Ming Zuo & Mingkai Liu & Shiming Zhou & Jie Zeng, 2024. "Distance effect of single atoms on stability of cobalt oxide catalysts for acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46176-0
    DOI: 10.1038/s41467-024-46176-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46176-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46176-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuannan Wang & Mingcheng Zhang & Zhenye Kang & Lei Shi & Yucheng Shen & Boyuan Tian & Yongcun Zou & Hui Chen & Xiaoxin Zou, 2023. "Nano-metal diborides-supported anode catalyst with strongly coupled TaOx/IrO2 catalytic layer for low-iridium-loading proton exchange membrane electrolyzer," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Rui Li & Haiyun Wang & Fei Hu & K. C. Chan & Xiongjun Liu & Zhaoping Lu & Jing Wang & Zhibin Li & Longjiao Zeng & Yuanyuan Li & Xiaojun Wu & Yujie Xiong, 2021. "IrW nanochannel support enabling ultrastable electrocatalytic oxygen evolution at 2 A cm−2 in acidic media," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Panlong Zhai & Chen Wang & Yuanyuan Zhao & Yanxue Zhang & Junfeng Gao & Licheng Sun & Jungang Hou, 2023. "Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Hui Su & Wanlin Zhou & Wu Zhou & Yuanli Li & Lirong Zheng & Hui Zhang & Meihuan Liu & Xiuxiu Zhang & Xuan Sun & Yanzhi Xu & Fengchun Hu & Jing Zhang & Tiandou Hu & Qinghua Liu & Shiqiang Wei, 2021. "In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Qian Dang & Haiping Lin & Zhenglong Fan & Lu Ma & Qi Shao & Yujin Ji & Fangfang Zheng & Shize Geng & Shi-Ze Yang & Ningning Kong & Wenxiang Zhu & Youyong Li & Fan Liao & Xiaoqing Huang & Mingwang Shao, 2021. "Iridium metallene oxide for acidic oxygen evolution catalysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Woong Hee Lee & Man Ho Han & Young-Jin Ko & Byoung Koun Min & Keun Hwa Chae & Hyung-Suk Oh, 2022. "Electrode reconstruction strategy for oxygen evolution reaction: maintaining Fe-CoOOH phase with intermediate-spin state during electrolysis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Felix T. Haase & Arno Bergmann & Travis E. Jones & Janis Timoshenko & Antonia Herzog & Hyo Sang Jeon & Clara Rettenmaier & Beatriz Roldan Cuenya, 2022. "Size effects and active state formation of cobalt oxide nanoparticles during the oxygen evolution reaction," Nature Energy, Nature, vol. 7(8), pages 765-773, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanfeng Shi & Lupeng Wang & Miao Liu & Zuozheng Xu & Peilin Huang & Lizhe Liu & Yuanhong Xu, 2025. "Electron–phonon coupling and coherent energy superposition induce spin-sensitive orbital degeneracy for enhanced acidic water oxidation," Nature Communications, Nature, vol. 16(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaoping Shi & Ji Li & Yibo Wang & Shiwei Liu & Jianbing Zhu & Jiahao Yang & Xian Wang & Jing Ni & Zheng Jiang & Lijuan Zhang & Ying Wang & Changpeng Liu & Wei Xing & Junjie Ge, 2023. "Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Shouwei Zuo & Zhi-Peng Wu & Deting Xu & Rafia Ahmad & Lirong Zheng & Jing Zhang & Lina Zhao & Wenhuan Huang & Hassan Al Qahtani & Yu Han & Luigi Cavallo & Huabin Zhang, 2024. "Local compressive strain-induced anti-corrosion over isolated Ru-decorated Co3O4 for efficient acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Yu Shen & Xiao-Long Zhang & Ming-Rong Qu & Jie Ma & Sheng Zhu & Yu-Lin Min & Min-Rui Gao & Shu-Hong Yu, 2024. "Cr dopant mediates hydroxyl spillover on RuO2 for high-efficiency proton exchange membrane electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Hui Su & Chenyu Yang & Meihuan Liu & Xu Zhang & Wanlin Zhou & Yuhao Zhang & Kun Zheng & Shixun Lian & Qinghua Liu, 2024. "Tensile straining of iridium sites in manganese oxides for proton-exchange membrane water electrolysers," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Chen Wang & Chaoyuan Deng & Panlong Zhai & Xiaoran Shi & Wei Liu & Dingfeng Jin & Bing Shang & Junfeng Gao & Licheng Sun & Jungang Hou, 2025. "Tracking the correlation between spintronic structure and oxygen evolution reaction mechanism of cobalt-ruthenium-based electrocatalyst," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    6. Xinyu Ping & Yongduo Liu & Lixia Zheng & Yang Song & Lin Guo & Siguo Chen & Zidong Wei, 2024. "Locking the lattice oxygen in RuO2 to stabilize highly active Ru sites in acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Meihuan Liu & Jing Zhang & Hui Su & Yaling Jiang & Wanlin Zhou & Chenyu Yang & Shuowen Bo & Jun Pan & Qinghua Liu, 2024. "In situ modulating coordination fields of single-atom cobalt catalyst for enhanced oxygen reduction reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Carlos G. Rodellar & José M. Gisbert-Gonzalez & Francisco Sarabia & Beatriz Roldan Cuenya & Sebastian Z. Oener, 2024. "Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces," Nature Energy, Nature, vol. 9(5), pages 548-558, May.
    9. Yixin Hao & Sung-Fu Hung & Luqi Wang & Liming Deng & Wen-Jing Zeng & Chenchen Zhang & Zih-Yi Lin & Chun-Han Kuo & Ye Wang & Ying Zhang & Han-Yi Chen & Feng Hu & Linlin Li & Shengjie Peng, 2024. "Designing neighboring-site activation of single atom via tunnel ions for boosting acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Inkyu Lee & Abhijith Surendran & Samantha Fleury & Ian Gimino & Alexander Curtiss & Cody Fell & Daniel J. Shiwarski & Omar Refy & Blaine Rothrock & Seonghan Jo & Tim Schwartzkopff & Abijeet Singh Meht, 2023. "Electrocatalytic on-site oxygenation for transplanted cell-based-therapies," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Shujie Liu & Zhiguo Zhang & Kamran Dastafkan & Yan Shen & Chuan Zhao & Mingkui Wang, 2025. "Yttrium-doped NiMo-MoO2 heterostructure electrocatalysts for hydrogen production from alkaline seawater," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    12. Cai, Jiajia & Tang, Xiangxuan & Wang, Jianmin & Zhang, Tingting & Xie, Qian & Mao, Keke & Li, Song & Qin, Gaowu, 2024. "Self-driving photothermal anode electrocatalyst towards the robust OER for water electrolysis," Renewable Energy, Elsevier, vol. 232(C).
    13. Cristina Hora & Florin Ciprian Dan & Nicolae Rancov & Gabriela Elena Badea & Calin Secui, 2022. "Main Trends and Research Directions in Hydrogen Generation Using Low Temperature Electrolysis: A Systematic Literature Review," Energies, MDPI, vol. 15(16), pages 1-21, August.
    14. Shiyi Chen & Shishi Zhang & Lei Guo & Lun Pan & Chengxiang Shi & Xiangwen Zhang & Zhen-Feng Huang & Guidong Yang & Ji-Jun Zou, 2023. "Reconstructed Ir‒O‒Mo species with strong Brønsted acidity for acidic water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Earl Matthew Davis & Arno Bergmann & Chao Zhan & Helmut Kuhlenbeck & Beatriz Roldan Cuenya, 2023. "Comparative study of Co3O4(111), CoFe2O4(111), and Fe3O4(111) thin film electrocatalysts for the oxygen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Sicheng Li & Tong Liu & Wei Zhang & Mingzhen Wang & Huijuan Zhang & Chunlan Qin & Lingling Zhang & Yudan Chen & Shuaiwei Jiang & Dong Liu & Xiaokang Liu & Huijuan Wang & Qiquan Luo & Tao Ding & Tao Ya, 2024. "Highly efficient anion exchange membrane water electrolyzers via chromium-doped amorphous electrocatalysts," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Dongpeng Zhang & Yanxiao Li & Pengfei Wang & Jinyong Qu & Yi Li & Sihui Zhan, 2023. "Dynamic active-site induced by host-guest interactions boost the Fenton-like reaction for organic wastewater treatment," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Shu-Pei Zeng & Hang Shi & Tian-Yi Dai & Yang Liu & Zi Wen & Gao-Feng Han & Tong-Hui Wang & Wei Zhang & Xing-You Lang & Wei-Tao Zheng & Qing Jiang, 2023. "Lamella-heterostructured nanoporous bimetallic iron-cobalt alloy/oxyhydroxide and cerium oxynitride electrodes as stable catalysts for oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Wanlin Zhou & Baojie Li & Xinyu Liu & Jingjing Jiang & Shuowen Bo & Chenyu Yang & Qizheng An & Yuhao Zhang & Mikhail A. Soldatov & Huijuan Wang & Shiqiang Wei & Qinghua Liu, 2024. "In situ tuning of platinum 5d valence states for four-electron oxygen reduction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Fan Liao & Kui Yin & Yujin Ji & Wenxiang Zhu & Zhenglong Fan & Youyong Li & Jun Zhong & Mingwang Shao & Zhenhui Kang & Qi Shao, 2023. "Iridium oxide nanoribbons with metastable monoclinic phase for highly efficient electrocatalytic oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46176-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.