IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36380-9.html
   My bibliography  Save this article

Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers

Author

Listed:
  • Zhaoping Shi

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Ji Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yibo Wang

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Shiwei Liu

    (Chinese Academy of Sciences)

  • Jianbing Zhu

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Jiahao Yang

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Xian Wang

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Jing Ni

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Zheng Jiang

    (Chinese Academy of Sciences
    Chinese Academy of Science)

  • Lijuan Zhang

    (Chinese Academy of Sciences
    Chinese Academy of Science)

  • Ying Wang

    (Chinese Academy of Sciences)

  • Changpeng Liu

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Wei Xing

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Junjie Ge

    (Chinese Academy of Sciences
    University of Science and Technology of China)

Abstract

The poor stability of Ru-based acidic oxygen evolution (OER) electrocatalysts has greatly hampered their application in polymer electrolyte membrane electrolyzers (PEMWEs). Traditional understanding of performance degradation centered on influence of bias fails in describing the stability trend, calling for deep dive into the essential origin of inactivation. Here we uncover the decisive role of reaction route (including catalytic mechanism and intermediates binding strength) on operational stability of Ru-based catalysts. Using MRuOx (M = Ce4+, Sn4+, Ru4+, Cr4+) solid solution as structure model, we find the reaction route, thereby stability, can be customized by controlling the Ru charge. The screened SnRuOx thus exhibits orders of magnitude lifespan extension. A scalable PEMWE single cell using SnRuOx anode conveys an ever-smallest degradation rate of 53 μV h−1 during a 1300 h operation at 1 A cm−2.

Suggested Citation

  • Zhaoping Shi & Ji Li & Yibo Wang & Shiwei Liu & Jianbing Zhu & Jiahao Yang & Xian Wang & Jing Ni & Zheng Jiang & Lijuan Zhang & Ying Wang & Changpeng Liu & Wei Xing & Junjie Ge, 2023. "Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36380-9
    DOI: 10.1038/s41467-023-36380-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36380-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36380-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xinghui Liu & Shibo Xi & Hyunwoo Kim & Ashwani Kumar & Jinsun Lee & Jian Wang & Ngoc Quang Tran & Taehun Yang & Xiaodong Shao & Mengfang Liang & Min Gyu Kim & Hyoyoung Lee, 2021. "Restructuring highly electron-deficient metal-metal oxides for boosting stability in acidic oxygen evolution reaction," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Julius Knöppel & Maximilian Möckl & Daniel Escalera-López & Kevin Stojanovski & Markus Bierling & Thomas Böhm & Simon Thiele & Matthias Rzepka & Serhiy Cherevko, 2021. "On the limitations in assessing stability of oxygen evolution catalysts using aqueous model electrochemical cells," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Linlin Cao & Qiquan Luo & Jiajia Chen & Lan Wang & Yue Lin & Huijuan Wang & Xiaokang Liu & Xinyi Shen & Wei Zhang & Wei Liu & Zeming Qi & Zheng Jiang & Jinlong Yang & Tao Yao, 2019. "Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    4. Hui Su & Wanlin Zhou & Wu Zhou & Yuanli Li & Lirong Zheng & Hui Zhang & Meihuan Liu & Xiuxiu Zhang & Xuan Sun & Yanzhi Xu & Fengchun Hu & Jing Zhang & Tiandou Hu & Qinghua Liu & Shiqiang Wei, 2021. "In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Qian Dang & Haiping Lin & Zhenglong Fan & Lu Ma & Qi Shao & Yujin Ji & Fangfang Zheng & Shize Geng & Shi-Ze Yang & Ningning Kong & Wenxiang Zhu & Youyong Li & Fan Liao & Xiaoqing Huang & Mingwang Shao, 2021. "Iridium metallene oxide for acidic oxygen evolution catalysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Rui Li & Haiyun Wang & Fei Hu & K. C. Chan & Xiongjun Liu & Zhaoping Lu & Jing Wang & Zhibin Li & Longjiao Zeng & Yuanyuan Li & Xiaojun Wu & Yujie Xiong, 2021. "IrW nanochannel support enabling ultrastable electrocatalytic oxygen evolution at 2 A cm−2 in acidic media," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Hong Nhan Nong & Lorenz J. Falling & Arno Bergmann & Malte Klingenhof & Hoang Phi Tran & Camillo Spöri & Rik Mom & Janis Timoshenko & Guido Zichittella & Axel Knop-Gericke & Simone Piccinin & Javier P, 2020. "Key role of chemistry versus bias in electrocatalytic oxygen evolution," Nature, Nature, vol. 587(7834), pages 408-413, November.
    8. Zhen-Feng Huang & Jiajia Song & Yonghua Du & Shibo Xi & Shuo Dou & Jean Marie Vianney Nsanzimana & Cheng Wang & Zhichuan J. Xu & Xin Wang, 2019. "Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts," Nature Energy, Nature, vol. 4(4), pages 329-338, April.
    9. Shunsuke Yagi & Ikuya Yamada & Hirofumi Tsukasaki & Akihiro Seno & Makoto Murakami & Hiroshi Fujii & Hungru Chen & Naoto Umezawa & Hideki Abe & Norimasa Nishiyama & Shigeo Mori, 2015. "Covalency-reinforced oxygen evolution reaction catalyst," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
    10. Xianbing Miao & Lifu Zhang & Liang Wu & Zhenpeng Hu & Lei Shi & Shiming Zhou, 2019. "Quadruple perovskite ruthenate as a highly efficient catalyst for acidic water oxidation," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenxiang Zhu & Xiangcong Song & Fan Liao & Hui Huang & Qi Shao & Kun Feng & Yunjie Zhou & Mengjie Ma & Jie Wu & Hao Yang & Haiwei Yang & Meng Wang & Jie Shi & Jun Zhong & Tao Cheng & Mingwang Shao & Y, 2023. "Stable and oxidative charged Ru enhance the acidic oxygen evolution reaction activity in two-dimensional ruthenium-iridium oxide," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Qianqian Ji & Bing Tang & Xilin Zhang & Chao Wang & Hao Tan & Jie Zhao & Ruiqi Liu & Mei Sun & Hengjie Liu & Chang Jiang & Jianrong Zeng & Xingke Cai & Wensheng Yan, 2024. "Operando identification of the oxide path mechanism with different dual-active sites for acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Chenhui Zhou & Lu Li & Zhaoqi Dong & Fan Lv & Hongyu Guo & Kai Wang & Menggang Li & Zhengyi Qian & Na Ye & Zheng Lin & Mingchuan Luo & Shaojun Guo, 2024. "Pinning effect of lattice Pb suppressing lattice oxygen reactivity of Pb-RuO2 enables stable industrial-level electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Ding Chen & Ruohan Yu & Kesong Yu & Ruihu Lu & Hongyu Zhao & Jixiang Jiao & Youtao Yao & Jiawei Zhu & Jinsong Wu & Shichun Mu, 2024. "Bicontinuous RuO2 nanoreactors for acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Yu Shen & Xiao-Long Zhang & Ming-Rong Qu & Jie Ma & Sheng Zhu & Yu-Lin Min & Min-Rui Gao & Shu-Hong Yu, 2024. "Cr dopant mediates hydroxyl spillover on RuO2 for high-efficiency proton exchange membrane electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Yanrong Xue & Jiwu Zhao & Liang Huang & Ying-Rui Lu & Abdul Malek & Ge Gao & Zhongbin Zhuang & Dingsheng Wang & Cafer T. Yavuz & Xu Lu, 2023. "Stabilizing ruthenium dioxide with cation-anchored sulfate for durable oxygen evolution in proton-exchange membrane water electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Muhammad Imran Abdullah & Yusheng Fang & Xiaobing Wu & Meiqi Hu & Jing Shao & Youkun Tao & Haijiang Wang, 2024. "Tackling activity-stability paradox of reconstructed NiIrOx electrocatalysts by bridged W-O moiety," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Han Wu & Jiangwei Chang & Jingkun Yu & Siyang Wang & Zhiang Hu & Geoffrey I. N. Waterhouse & Xue Yong & Zhiyong Tang & Junbiao Chang & Siyu Lu, 2024. "Atomically engineered interfaces inducing bridging oxygen-mediated deprotonation for enhanced oxygen evolution in acidic conditions," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Xinyu Ping & Yongduo Liu & Lixia Zheng & Yang Song & Lin Guo & Siguo Chen & Zidong Wei, 2024. "Locking the lattice oxygen in RuO2 to stabilize highly active Ru sites in acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Lu Li & Gengwei Zhang & Chenhui Zhou & Fan Lv & Yingjun Tan & Ying Han & Heng Luo & Dawei Wang & Youxing Liu & Changshuai Shang & Lingyou Zeng & Qizheng Huang & Ruijin Zeng & Na Ye & Mingchuan Luo & S, 2024. "Lanthanide-regulating Ru-O covalency optimizes acidic oxygen evolution electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yixin Hao & Sung-Fu Hung & Luqi Wang & Liming Deng & Wen-Jing Zeng & Chenchen Zhang & Zih-Yi Lin & Chun-Han Kuo & Ye Wang & Ying Zhang & Han-Yi Chen & Feng Hu & Linlin Li & Shengjie Peng, 2024. "Designing neighboring-site activation of single atom via tunnel ions for boosting acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Xinyu Ping & Yongduo Liu & Lixia Zheng & Yang Song & Lin Guo & Siguo Chen & Zidong Wei, 2024. "Locking the lattice oxygen in RuO2 to stabilize highly active Ru sites in acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Zhirong Zhang & Chuanyi Jia & Peiyu Ma & Chen Feng & Jin Yang & Junming Huang & Jiana Zheng & Ming Zuo & Mingkai Liu & Shiming Zhou & Jie Zeng, 2024. "Distance effect of single atoms on stability of cobalt oxide catalysts for acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Pengcheng Ye & Keqing Fang & Haiyan Wang & Yahao Wang & Hao Huang & Chenbin Mo & Jiqiang Ning & Yong Hu, 2024. "Lattice oxygen activation and local electric field enhancement by co-doping Fe and F in CoO nanoneedle arrays for industrial electrocatalytic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Hui Su & Chenyu Yang & Meihuan Liu & Xu Zhang & Wanlin Zhou & Yuhao Zhang & Kun Zheng & Shixun Lian & Qinghua Liu, 2024. "Tensile straining of iridium sites in manganese oxides for proton-exchange membrane water electrolysers," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Shiyi Chen & Shishi Zhang & Lei Guo & Lun Pan & Chengxiang Shi & Xiangwen Zhang & Zhen-Feng Huang & Guidong Yang & Ji-Jun Zou, 2023. "Reconstructed Ir‒O‒Mo species with strong Brønsted acidity for acidic water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Haoyin Zhong & Qi Zhang & Junchen Yu & Xin Zhang & Chao Wu & Hang An & Yifan Ma & Hao Wang & Jun Zhang & Yong-Wei Zhang & Caozheng Diao & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin Xue, 2023. "Key role of eg* band broadening in nickel-based oxyhydroxides on coupled oxygen evolution mechanism," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Xin Zhang & Haoyin Zhong & Qi Zhang & Qihan Zhang & Chao Wu & Junchen Yu & Yifan Ma & Hang An & Hao Wang & Yiming Zou & Caozheng Diao & Jingsheng Chen & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin , 2024. "High-spin Co3+ in cobalt oxyhydroxide for efficient water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Hongnan Jia & Na Yao & Yiming Jin & Liqing Wu & Juan Zhu & Wei Luo, 2024. "Stabilizing atomic Ru species in conjugated sp2 carbon-linked covalent organic framework for acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Sheng Zhao & Sung-Fu Hung & Liming Deng & Wen-Jing Zeng & Tian Xiao & Shaoxiong Li & Chun-Han Kuo & Han-Yi Chen & Feng Hu & Shengjie Peng, 2024. "Constructing regulable supports via non-stoichiometric engineering to stabilize ruthenium nanoparticles for enhanced pH-universal water splitting," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Jiao Lan & Zengxi Wei & Ying-Rui Lu & DeChao Chen & Shuangliang Zhao & Ting-Shan Chan & Yongwen Tan, 2023. "Efficient electrosynthesis of formamide from carbon monoxide and nitrite on a Ru-dispersed Cu nanocluster catalyst," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Inkyu Lee & Abhijith Surendran & Samantha Fleury & Ian Gimino & Alexander Curtiss & Cody Fell & Daniel J. Shiwarski & Omar Refy & Blaine Rothrock & Seonghan Jo & Tim Schwartzkopff & Abijeet Singh Meht, 2023. "Electrocatalytic on-site oxygenation for transplanted cell-based-therapies," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Shouwei Zuo & Zhi-Peng Wu & Deting Xu & Rafia Ahmad & Lirong Zheng & Jing Zhang & Lina Zhao & Wenhuan Huang & Hassan Al Qahtani & Yu Han & Luigi Cavallo & Huabin Zhang, 2024. "Local compressive strain-induced anti-corrosion over isolated Ru-decorated Co3O4 for efficient acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Lingxi Zhou & Yangfan Shao & Fang Yin & Jia Li & Feiyu Kang & Ruitao Lv, 2023. "Stabilizing non-iridium active sites by non-stoichiometric oxide for acidic water oxidation at high current density," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Lu Li & Gengwei Zhang & Chenhui Zhou & Fan Lv & Yingjun Tan & Ying Han & Heng Luo & Dawei Wang & Youxing Liu & Changshuai Shang & Lingyou Zeng & Qizheng Huang & Ruijin Zeng & Na Ye & Mingchuan Luo & S, 2024. "Lanthanide-regulating Ru-O covalency optimizes acidic oxygen evolution electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Wenxiang Zhu & Xiangcong Song & Fan Liao & Hui Huang & Qi Shao & Kun Feng & Yunjie Zhou & Mengjie Ma & Jie Wu & Hao Yang & Haiwei Yang & Meng Wang & Jie Shi & Jun Zhong & Tao Cheng & Mingwang Shao & Y, 2023. "Stable and oxidative charged Ru enhance the acidic oxygen evolution reaction activity in two-dimensional ruthenium-iridium oxide," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Dongpeng Zhang & Yanxiao Li & Pengfei Wang & Jinyong Qu & Yi Li & Sihui Zhan, 2023. "Dynamic active-site induced by host-guest interactions boost the Fenton-like reaction for organic wastewater treatment," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Yunzhou Wen & Cheng Liu & Rui Huang & Hui Zhang & Xiaobao Li & F. Pelayo García de Arquer & Zhi Liu & Youyong Li & Bo Zhang, 2022. "Introducing Brønsted acid sites to accelerate the bridging-oxygen-assisted deprotonation in acidic water oxidation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Yu Du & Fakang Xie & Mengfei Lu & Rongxian Lv & Wangxi Liu & Yuandong Yan & Shicheng Yan & Zhigang Zou, 2024. "Continuous strain tuning of oxygen evolution catalysts with anisotropic thermal expansion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Yiming Zhu & Jiaao Wang & Toshinari Koketsu & Matthias Kroschel & Jin-Ming Chen & Su-Yang Hsu & Graeme Henkelman & Zhiwei Hu & Peter Strasser & Jiwei Ma, 2022. "Iridium single atoms incorporated in Co3O4 efficiently catalyze the oxygen evolution in acidic conditions," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36380-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.