IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v203y2023icp583-591.html
   My bibliography  Save this article

Automatic operation of decoupled water electrolysis based on bipolar electrode

Author

Listed:
  • Zhao, Meng-Jie
  • He, Qian
  • Xiang, Ting
  • Ya, Hua-Qin
  • Luo, Hao
  • Wan, Shanhong
  • Ding, Jun
  • He, Jian-Bo

Abstract

Electrolytic hydrogen production faces a technological issue of gas crossover through the ion-membrane between hydrogen and oxygen chambers, especially under renewable energy low power driving conditions. As a solution, decoupled water electrolysis was proposed and has made important progress in laboratory research but faces the problem of how to implement it in industry. The present work develops a decoupled alkaline water electrolysis system without the need to change the filter press structure of industrial electrolyzers. A wireless bipolar electrode was designed and prepared from a redox pair (NiOOH/Ni(OH)2), which functions as a substitute for conventional ion-membrane but enables complete blocking of the gas crossover (and ion transfer also) between the hydrogen and oxygen chambers. A matching control scheme was designed and implemented for continuous water electrolysis. The high purity hydrogen production achieved a coulombic efficiency of 99.2% and a specific electricity consumption of 57.5 kWh kg−1 H2 at a current density of 50 mA cm−2. This bipolar decoupling scheme of automatic operation makes an important step towards industrial implementation of decoupled water electrolysis technology.

Suggested Citation

  • Zhao, Meng-Jie & He, Qian & Xiang, Ting & Ya, Hua-Qin & Luo, Hao & Wan, Shanhong & Ding, Jun & He, Jian-Bo, 2023. "Automatic operation of decoupled water electrolysis based on bipolar electrode," Renewable Energy, Elsevier, vol. 203(C), pages 583-591.
  • Handle: RePEc:eee:renene:v:203:y:2023:i:c:p:583-591
    DOI: 10.1016/j.renene.2022.12.083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122018791
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.12.083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hen Dotan & Avigail Landman & Stafford W. Sheehan & Kirtiman Deo Malviya & Gennady E. Shter & Daniel A. Grave & Ziv Arzi & Nachshon Yehudai & Manar Halabi & Netta Gal & Noam Hadari & Coral Cohen & Avn, 2019. "Decoupled hydrogen and oxygen evolution by a two-step electrochemical–chemical cycle for efficient overall water splitting," Nature Energy, Nature, vol. 4(9), pages 786-795, September.
    2. Zhuk, A.Z. & Borzenko, V.I. & Buzoverov, E.A. & Ivanov, P.P. & Shkolnikov, E.I., 2022. "Comparative analysis of hydrogen production technologies: Hydrothermal oxidation of the "carbonless" aluminum and water electrolysis," Renewable Energy, Elsevier, vol. 197(C), pages 1244-1250.
    3. Bhandari, Ramchandra & Shah, Ronak Rakesh, 2021. "Hydrogen as energy carrier: Techno-economic assessment of decentralized hydrogen production in Germany," Renewable Energy, Elsevier, vol. 177(C), pages 915-931.
    4. Long Chen & Xiaoli Dong & Yonggang Wang & Yongyao Xia, 2016. "Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide," Nature Communications, Nature, vol. 7(1), pages 1-8, September.
    5. Chen, Nannan & Du, Xiaoqiang & Zhang, Xiaoshuang, 2022. "Controlled synthesis of MnS/ZnS hybrid material with different morphology as efficient water and urea electrolysis catalyst," Renewable Energy, Elsevier, vol. 193(C), pages 715-724.
    6. Buttler, Alexander & Spliethoff, Hartmut, 2018. "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2440-2454.
    7. Zhao, Meng-Jie & Li, Er-Mei & Deng, Ning & Hu, Yingjie & Li, Chao-Xiong & Li, Bing & Li, Fang & Guo, Zhen-Guo & He, Jian-Bo, 2022. "Indirect electrodeposition of a NiMo@Ni(OH)2MoOx composite catalyst for superior hydrogen production in acidic and alkaline electrolytes," Renewable Energy, Elsevier, vol. 191(C), pages 370-379.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Yi & You, Shi & Huang, Chunjun & Jin, Xin, 2023. "Model-based economic analysis of off-grid wind/hydrogen systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    2. Yong Zuo & Sebastiano Bellani & Michele Ferri & Gabriele Saleh & Dipak V. Shinde & Marilena Isabella Zappia & Rosaria Brescia & Mirko Prato & Luca Trizio & Ivan Infante & Francesco Bonaccorso & Libera, 2023. "High-performance alkaline water electrolyzers based on Ru-perturbed Cu nanoplatelets cathode," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Carlson, Ewa Lazarczyk & Pickford, Kit & Nyga-Łukaszewska, Honorata, 2023. "Green hydrogen and an evolving concept of energy security: Challenges and comparisons," Renewable Energy, Elsevier, vol. 219(P1).
    5. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    6. Oliver Wagner & Thomas Adisorn & Lena Tholen & Dagmar Kiyar, 2020. "Surviving the Energy Transition: Development of a Proposal for Evaluating Sustainable Business Models for Incumbents in Germany’s Electricity Market," Energies, MDPI, vol. 13(3), pages 1-17, February.
    7. d'Amore-Domenech, Rafael & Leo, Teresa J. & Pollet, Bruno G., 2021. "Bulk power transmission at sea: Life cycle cost comparison of electricity and hydrogen as energy vectors," Applied Energy, Elsevier, vol. 288(C).
    8. Trowell, K.A. & Goroshin, S. & Frost, D.L. & Bergthorson, J.M., 2020. "Aluminum and its role as a recyclable, sustainable carrier of renewable energy," Applied Energy, Elsevier, vol. 275(C).
    9. Mikovits, Christian & Wetterlund, Elisabeth & Wehrle, Sebastian & Baumgartner, Johann & Schmidt, Johannes, 2021. "Stronger together: Multi-annual variability of hydrogen production supported by wind power in Sweden," Applied Energy, Elsevier, vol. 282(PB).
    10. Gorre, Jachin & Ortloff, Felix & van Leeuwen, Charlotte, 2019. "Production costs for synthetic methane in 2030 and 2050 of an optimized Power-to-Gas plant with intermediate hydrogen storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Bedoić, Robert & Dorotić, Hrvoje & Schneider, Daniel Rolph & Čuček, Lidija & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2021. "Synergy between feedstock gate fee and power-to-gas: An energy and economic analysis of renewable methane production in a biogas plant," Renewable Energy, Elsevier, vol. 173(C), pages 12-23.
    12. Shaojie Song & Haiyang Lin & Peter Sherman & Xi Yang & Chris P. Nielsen & Xinyu Chen & Michael B. McElroy, 2021. "Production of hydrogen from offshore wind in China and cost-competitive supply to Japan," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    13. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    14. Dasireddy, Venkata D.B.C. & Likozar, Blaž, 2022. "Cu–Mn–O nano-particle/nano-sheet spinel-type materials as catalysts in methanol steam reforming (MSR) and preferential oxidation (PROX) reaction for purified hydrogen production," Renewable Energy, Elsevier, vol. 182(C), pages 713-724.
    15. Lee, Boreum & Lim, Dongjun & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2021. "Techno-economic analysis of H2 energy storage system based on renewable energy certificate," Renewable Energy, Elsevier, vol. 167(C), pages 91-98.
    16. Ye, Yang & Yue, Yi & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2021. "Enhanced hydrogen storage of a LaNi5 based reactor by using phase change materials," Renewable Energy, Elsevier, vol. 180(C), pages 734-743.
    17. Corey Duncan & Robin Roche & Samir Jemei & Marie-Cécile Péra, 2022. "Techno-economical modelling of a power-to-gas system for plant configuration evaluation in a local context," Post-Print hal-03692975, HAL.
    18. Yuandong Yan & Ruyi Wang & Qian Zheng & Jiaying Zhong & Weichang Hao & Shicheng Yan & Zhigang Zou, 2023. "Nonredox trivalent nickel catalyzing nucleophilic electrooxidation of organics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Son, Yeong Geon & Oh, Byeong Chan & Acquah, Moses Amoasi & Kim, Sung Yul, 2023. "Optimal facility combination set of integrated energy system based on consensus point between independent system operator and independent power producer," Energy, Elsevier, vol. 266(C).
    20. Shen, Xiaojun & Li, Xingyi & Yuan, Jiahai & Jin, Yu, 2022. "A hydrogen-based zero-carbon microgrid demonstration in renewable-rich remote areas: System design and economic feasibility," Applied Energy, Elsevier, vol. 326(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:203:y:2023:i:c:p:583-591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.