IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53763-8.html
   My bibliography  Save this article

Local compressive strain-induced anti-corrosion over isolated Ru-decorated Co3O4 for efficient acidic oxygen evolution

Author

Listed:
  • Shouwei Zuo

    (King Abdullah University of Science and Technology
    King Abdullah University of Science and Technology (KAUST))

  • Zhi-Peng Wu

    (King Abdullah University of Science and Technology
    King Abdullah University of Science and Technology (KAUST))

  • Deting Xu

    (Chinese Academy of Sciences)

  • Rafia Ahmad

    (King Abdullah University of Science and Technology (KAUST))

  • Lirong Zheng

    (Chinese Academy of Sciences)

  • Jing Zhang

    (Chinese Academy of Sciences)

  • Lina Zhao

    (Chinese Academy of Sciences)

  • Wenhuan Huang

    (Shaanxi University of Science and Technology)

  • Hassan Al Qahtani

    (Saudi Aramco)

  • Yu Han

    (King Abdullah University of Science and Technology (KAUST)
    King Abdullah University of Science and Technology
    South China University of Technology
    South China University of Technology)

  • Luigi Cavallo

    (King Abdullah University of Science and Technology (KAUST))

  • Huabin Zhang

    (King Abdullah University of Science and Technology
    King Abdullah University of Science and Technology (KAUST))

Abstract

Enhancing corrosion resistance is essential for developing efficient electrocatalysts for acidic oxygen evolution reaction (OER). Herein, we report the strategic manipulation of the local compressive strain to reinforce the anti-corrosion properties of the non-precious Co3O4 support. The incorporation of Ru single atoms, larger in atomic size than Co, into the Co3O4 lattice (Ru-Co3O4), triggers localized strain compression and lattice distortion on the Co-O lattice. A comprehensive exploration of the correlation between this specific local compressive strain and electrocatalytic performance is conducted through experimental and theoretical analyses. The presence of the localized strain in Ru-Co3O4 is confirmed by operando X-ray absorption studies and supported by quantum calculations. This local strain, presented in a shortened Co-O bond length, enhances the anti-corrosion properties of Co3O4 by suppressing metal dissolutions. Consequently, Ru-Co3O4 shows satisfactory stability, maintaining OER for over 400 hours at 30 mA cm−2 with minimal decay. This study demonstrates the potential of the local strain effect in fortifying catalyst stability for acidic OER and beyond.

Suggested Citation

  • Shouwei Zuo & Zhi-Peng Wu & Deting Xu & Rafia Ahmad & Lirong Zheng & Jing Zhang & Lina Zhao & Wenhuan Huang & Hassan Al Qahtani & Yu Han & Luigi Cavallo & Huabin Zhang, 2024. "Local compressive strain-induced anti-corrosion over isolated Ru-decorated Co3O4 for efficient acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53763-8
    DOI: 10.1038/s41467-024-53763-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53763-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53763-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hui Su & Chenyu Yang & Meihuan Liu & Xu Zhang & Wanlin Zhou & Yuhao Zhang & Kun Zheng & Shixun Lian & Qinghua Liu, 2024. "Tensile straining of iridium sites in manganese oxides for proton-exchange membrane water electrolysers," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Hui Su & Wanlin Zhou & Wu Zhou & Yuanli Li & Lirong Zheng & Hui Zhang & Meihuan Liu & Xiuxiu Zhang & Xuan Sun & Yanzhi Xu & Fengchun Hu & Jing Zhang & Tiandou Hu & Qinghua Liu & Shiqiang Wei, 2021. "In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    4. Jinzhen Huang & Hongyuan Sheng & R. Dominic Ross & Jiecai Han & Xianjie Wang & Bo Song & Song Jin, 2021. "Modifying redox properties and local bonding of Co3O4 by CeO2 enhances oxygen evolution catalysis in acid," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Arno Bergmann & Elias Martinez-Moreno & Detre Teschner & Petko Chernev & Manuel Gliech & Jorge Ferreira de Araújo & Tobias Reier & Holger Dau & Peter Strasser, 2015. "Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution," Nature Communications, Nature, vol. 6(1), pages 1-9, December.
    6. Rui Li & Haiyun Wang & Fei Hu & K. C. Chan & Xiongjun Liu & Zhaoping Lu & Jing Wang & Zhibin Li & Longjiao Zeng & Yuanyuan Li & Xiaojun Wu & Yujie Xiong, 2021. "IrW nanochannel support enabling ultrastable electrocatalytic oxygen evolution at 2 A cm−2 in acidic media," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Yiming Zhu & Jiaao Wang & Toshinari Koketsu & Matthias Kroschel & Jin-Ming Chen & Su-Yang Hsu & Graeme Henkelman & Zhiwei Hu & Peter Strasser & Jiwei Ma, 2022. "Iridium single atoms incorporated in Co3O4 efficiently catalyze the oxygen evolution in acidic conditions," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Yubo Chen & Haiyan Li & Jingxian Wang & Yonghua Du & Shibo Xi & Yuanmiao Sun & Matthew Sherburne & Joel W. Ager & Adrian C. Fisher & Zhichuan J. Xu, 2019. "Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    9. Zhi-Peng Wu & Dominic T. Caracciolo & Yazan Maswadeh & Jianguo Wen & Zhijie Kong & Shiyao Shan & Jorge A. Vargas & Shan Yan & Emma Hopkins & Keonwoo Park & Anju Sharma & Yang Ren & Valeri Petkov & Lic, 2021. "Alloying–realloying enabled high durability for Pt–Pd-3d-transition metal nanoparticle fuel cell catalysts," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    10. Jakob Kibsgaard & Ib Chorkendorff, 2019. "Considerations for the scaling-up of water splitting catalysts," Nature Energy, Nature, vol. 4(6), pages 430-433, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Su & Chenyu Yang & Meihuan Liu & Xu Zhang & Wanlin Zhou & Yuhao Zhang & Kun Zheng & Shixun Lian & Qinghua Liu, 2024. "Tensile straining of iridium sites in manganese oxides for proton-exchange membrane water electrolysers," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Yuannan Wang & Mingcheng Zhang & Zhenye Kang & Lei Shi & Yucheng Shen & Boyuan Tian & Yongcun Zou & Hui Chen & Xiaoxin Zou, 2023. "Nano-metal diborides-supported anode catalyst with strongly coupled TaOx/IrO2 catalytic layer for low-iridium-loading proton exchange membrane electrolyzer," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Hongnan Jia & Na Yao & Yiming Jin & Liqing Wu & Juan Zhu & Wei Luo, 2024. "Stabilizing atomic Ru species in conjugated sp2 carbon-linked covalent organic framework for acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Xinyu Ping & Yongduo Liu & Lixia Zheng & Yang Song & Lin Guo & Siguo Chen & Zidong Wei, 2024. "Locking the lattice oxygen in RuO2 to stabilize highly active Ru sites in acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Zhirong Zhang & Chuanyi Jia & Peiyu Ma & Chen Feng & Jin Yang & Junming Huang & Jiana Zheng & Ming Zuo & Mingkai Liu & Shiming Zhou & Jie Zeng, 2024. "Distance effect of single atoms on stability of cobalt oxide catalysts for acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Pengcheng Ye & Keqing Fang & Haiyan Wang & Yahao Wang & Hao Huang & Chenbin Mo & Jiqiang Ning & Yong Hu, 2024. "Lattice oxygen activation and local electric field enhancement by co-doping Fe and F in CoO nanoneedle arrays for industrial electrocatalytic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Gang Zhou & Peifang Wang & Bin Hu & Xinyue Shen & Chongchong Liu & Weixiang Tao & Peilin Huang & Lizhe Liu, 2022. "Spin-related symmetry breaking induced by half-disordered hybridization in BixEr2-xRu2O7 pyrochlores for acidic oxygen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Zhaoping Shi & Ji Li & Yibo Wang & Shiwei Liu & Jianbing Zhu & Jiahao Yang & Xian Wang & Jing Ni & Zheng Jiang & Lijuan Zhang & Ying Wang & Changpeng Liu & Wei Xing & Junjie Ge, 2023. "Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Shiyi Chen & Shishi Zhang & Lei Guo & Lun Pan & Chengxiang Shi & Xiangwen Zhang & Zhen-Feng Huang & Guidong Yang & Ji-Jun Zou, 2023. "Reconstructed Ir‒O‒Mo species with strong Brønsted acidity for acidic water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Qian Dang & Haiping Lin & Zhenglong Fan & Lu Ma & Qi Shao & Yujin Ji & Fangfang Zheng & Shize Geng & Shi-Ze Yang & Ningning Kong & Wenxiang Zhu & Youyong Li & Fan Liao & Xiaoqing Huang & Mingwang Shao, 2021. "Iridium metallene oxide for acidic oxygen evolution catalysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Dongpeng Zhang & Yanxiao Li & Pengfei Wang & Jinyong Qu & Yi Li & Sihui Zhan, 2023. "Dynamic active-site induced by host-guest interactions boost the Fenton-like reaction for organic wastewater treatment," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Yubo Chen & Joon Kyo Seo & Yuanmiao Sun & Thomas A. Wynn & Marco Olguin & Minghao Zhang & Jingxian Wang & Shibo Xi & Yonghua Du & Kaidi Yuan & Wei Chen & Adrian C. Fisher & Maoyu Wang & Zhenxing Feng , 2022. "Enhanced oxygen evolution over dual corner-shared cobalt tetrahedra," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Shu-Pei Zeng & Hang Shi & Tian-Yi Dai & Yang Liu & Zi Wen & Gao-Feng Han & Tong-Hui Wang & Wei Zhang & Xing-You Lang & Wei-Tao Zheng & Qing Jiang, 2023. "Lamella-heterostructured nanoporous bimetallic iron-cobalt alloy/oxyhydroxide and cerium oxynitride electrodes as stable catalysts for oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Wanlin Zhou & Baojie Li & Xinyu Liu & Jingjing Jiang & Shuowen Bo & Chenyu Yang & Qizheng An & Yuhao Zhang & Mikhail A. Soldatov & Huijuan Wang & Shiqiang Wei & Qinghua Liu, 2024. "In situ tuning of platinum 5d valence states for four-electron oxygen reduction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    16. Wang, Yubao & Huang, Xiaozhou & Huang, Zhendong, 2024. "Energy-related uncertainty and Chinese stock market returns," Finance Research Letters, Elsevier, vol. 62(PB).
    17. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    18. Muhammad Habib Ur Rehman & Luigi Coppola & Ernestino Lufrano & Isabella Nicotera & Cataldo Simari, 2023. "Enhancing Water Retention, Transport, and Conductivity Performance in Fuel Cell Applications: Nafion-Based Nanocomposite Membranes with Organomodified Graphene Oxide Nanoplatelets," Energies, MDPI, vol. 16(23), pages 1-11, November.
    19. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    20. Sung-Fu Hung & Aoni Xu & Xue Wang & Fengwang Li & Shao-Hui Hsu & Yuhang Li & Joshua Wicks & Eduardo González Cervantes & Armin Sedighian Rasouli & Yuguang C. Li & Mingchuan Luo & Dae-Hyun Nam & Ning W, 2022. "A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53763-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.