IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40859-w.html
   My bibliography  Save this article

Assembly landscape for the bacterial large ribosomal subunit

Author

Listed:
  • Kai Sheng

    (The Scripps Research Institute)

  • Ning Li

    (The Scripps Research Institute)

  • Jessica N. Rabuck-Gibbons

    (The Scripps Research Institute
    The Salk Institute for Biological Studies)

  • Xiyu Dong

    (The Scripps Research Institute)

  • Dmitry Lyumkis

    (The Scripps Research Institute
    The Salk Institute for Biological Studies
    University of California San Diego)

  • James R. Williamson

    (The Scripps Research Institute)

Abstract

Assembly of ribosomes in bacteria is highly efficient, taking ~2-3 min, but this makes the abundance of assembly intermediates very low, which is a challenge for mechanistic understanding. Genetic perturbations of the assembly process create bottlenecks where intermediates accumulate, facilitating structural characterization. We use cryo-electron microscopy, with iterative subclassification to identify intermediates in the assembly of the 50S ribosomal subunit from E. coli. The analysis of the ensemble of intermediates that spans the entire biogenesis pathway for the 50 S subunit was facilitated by a dimensionality reduction and cluster picking approach using PCA-UMAP-HDBSCAN. The identity of the cooperative folding units in the RNA with associated proteins is revealed, and the hierarchy of these units reveals a complete assembly map for all RNA and protein components. The assembly generally proceeds co-transcriptionally, with some flexibility in the landscape to ensure efficiency for this central cellular process under a variety of growth conditions.

Suggested Citation

  • Kai Sheng & Ning Li & Jessica N. Rabuck-Gibbons & Xiyu Dong & Dmitry Lyumkis & James R. Williamson, 2023. "Assembly landscape for the bacterial large ribosomal subunit," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40859-w
    DOI: 10.1038/s41467-023-40859-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40859-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40859-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zahra Assur Sanghai & Linamarie Miller & Kelly R. Molloy & Jonas Barandun & Mirjam Hunziker & Malik Chaker-Margot & Junjie Wang & Brian T. Chait & Sebastian Klinge, 2018. "Modular assembly of the nucleolar pre-60S ribosomal subunit," Nature, Nature, vol. 556(7699), pages 126-129, April.
    2. Konstantin Bokov & Sergey V. Steinberg, 2009. "A hierarchical model for evolution of 23S ribosomal RNA," Nature, Nature, vol. 457(7232), pages 977-980, February.
    3. Bo Qin & Simon M. Lauer & Annika Balke & Carlos H. Vieira-Vieira & Jörg Bürger & Thorsten Mielke & Matthias Selbach & Patrick Scheerer & Christian M. T. Spahn & Rainer Nikolay, 2023. "Cryo-EM captures early ribosome assembly in action," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bintao He & Fa Zhang & Chenjie Feng & Jianyi Yang & Xin Gao & Renmin Han, 2024. "Accurate global and local 3D alignment of cryo-EM density maps using local spatial structural features," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Qin & Simon M. Lauer & Annika Balke & Carlos H. Vieira-Vieira & Jörg Bürger & Thorsten Mielke & Matthias Selbach & Patrick Scheerer & Christian M. T. Spahn & Rainer Nikolay, 2023. "Cryo-EM captures early ribosome assembly in action," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Lisa Kofler & Lorenz Grundmann & Magdalena Gerhalter & Michael Prattes & Juliane Merl-Pham & Gertrude Zisser & Irina Grishkovskaya & Victor-Valentin Hodirnau & Martin Vareka & Rolf Breinbauer & Stefan, 2024. "The novel ribosome biogenesis inhibitor usnic acid blocks nucleolar pre-60S maturation," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Victor E. Cruz & Christine S. Weirich & Nagesh Peddada & Jan P. Erzberger, 2024. "The DEAD-box ATPase Dbp10/DDX54 initiates peptidyl transferase center formation during 60S ribosome biogenesis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Gerald Ryan R. Aquino & Philipp Hackert & Nicolai Krogh & Kuan-Ting Pan & Mariam Jaafar & Anthony K. Henras & Henrik Nielsen & Henning Urlaub & Katherine E. Bohnsack & Markus T. Bohnsack, 2021. "The RNA helicase Dbp7 promotes domain V/VI compaction and stabilization of inter-domain interactions during early 60S assembly," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    5. Antoine Soulé & Vladimir Reinharz & Roman Sarrazin-Gendron & Alain Denise & Jérôme Waldispühl, 2021. "Finding recurrent RNA structural networks with fast maximal common subgraphs of edge-colored graphs," PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-28, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40859-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.