IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54812-y.html
   My bibliography  Save this article

RNA language models predict mutations that improve RNA function

Author

Listed:
  • Yekaterina Shulgina

    (University of California
    University of California
    University of California)

  • Marena I. Trinidad

    (University of California
    University of California)

  • Conner J. Langeberg

    (University of California
    University of California
    University of California)

  • Hunter Nisonoff

    (University of California)

  • Seyone Chithrananda

    (University of California
    University of California)

  • Petr Skopintsev

    (University of California
    University of California)

  • Amos J. Nissley

    (University of California)

  • Jaymin Patel

    (University of California)

  • Ron S. Boger

    (University of California
    University of California)

  • Honglue Shi

    (University of California
    University of California)

  • Peter H. Yoon

    (University of California
    University of California)

  • Erin E. Doherty

    (University of California
    University of California)

  • Tara Pande

    (University of California)

  • Aditya M. Iyer

    (University of California)

  • Jennifer A. Doudna

    (University of California
    University of California
    University of California
    University of California)

  • Jamie H. D. Cate

    (University of California
    University of California
    University of California
    University of California)

Abstract

Structured RNA lies at the heart of many central biological processes, from gene expression to catalysis. RNA structure prediction is not yet possible due to a lack of high-quality reference data associated with organismal phenotypes that could inform RNA function. We present GARNET (Gtdb Acquired RNa with Environmental Temperatures), a new database for RNA structural and functional analysis anchored to the Genome Taxonomy Database (GTDB). GARNET links RNA sequences to experimental and predicted optimal growth temperatures of GTDB reference organisms. Using GARNET, we develop sequence- and structure-aware RNA generative models, with overlapping triplet tokenization providing optimal encoding for a GPT-like model. Leveraging hyperthermophilic RNAs in GARNET and these RNA generative models, we identify mutations in ribosomal RNA that confer increased thermostability to the Escherichia coli ribosome. The GTDB-derived data and deep learning models presented here provide a foundation for understanding the connections between RNA sequence, structure, and function.

Suggested Citation

  • Yekaterina Shulgina & Marena I. Trinidad & Conner J. Langeberg & Hunter Nisonoff & Seyone Chithrananda & Petr Skopintsev & Amos J. Nissley & Jaymin Patel & Ron S. Boger & Honglue Shi & Peter H. Yoon &, 2024. "RNA language models predict mutations that improve RNA function," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54812-y
    DOI: 10.1038/s41467-024-54812-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54812-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54812-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    2. Fan Liu & Siniša Bratulić & Alan Costello & Teemu P. Miettinen & Ahmed H. Badran, 2021. "Directed evolution of rRNA improves translation kinetics and recombinant protein yield," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    3. Wenkai Wang & Chenjie Feng & Renmin Han & Ziyi Wang & Lisha Ye & Zongyang Du & Hong Wei & Fa Zhang & Zhenling Peng & Jianyi Yang, 2023. "trRosettaRNA: automated prediction of RNA 3D structure with transformer network," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Wolfgang H. Schmied & Zakir Tnimov & Chayasith Uttamapinant & Christopher D. Rae & Stephen D. Fried & Jason W. Chin, 2018. "Controlling orthogonal ribosome subunit interactions enables evolution of new function," Nature, Nature, vol. 564(7736), pages 444-448, December.
    5. Kai Sheng & Ning Li & Jessica N. Rabuck-Gibbons & Xiyu Dong & Dmitry Lyumkis & James R. Williamson, 2023. "Assembly landscape for the bacterial large ribosomal subunit," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    7. He Zhang & Liang Zhang & Ang Lin & Congcong Xu & Ziyu Li & Kaibo Liu & Boxiang Liu & Xiaopin Ma & Fanfan Zhao & Huiling Jiang & Chunxiu Chen & Haifa Shen & Hangwen Li & David H. Mathews & Yujian Zhang, 2023. "Algorithm for optimized mRNA design improves stability and immunogenicity," Nature, Nature, vol. 621(7978), pages 396-403, September.
    8. Bo Qin & Simon M. Lauer & Annika Balke & Carlos H. Vieira-Vieira & Jörg Bürger & Thorsten Mielke & Matthias Selbach & Patrick Scheerer & Christian M. T. Spahn & Rainer Nikolay, 2023. "Cryo-EM captures early ribosome assembly in action," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabian Ries & Jasmin Gorlt & Sabrina Kaiser & Vanessa Scherer & Charlotte Seydel & Sandra Nguyen & Andreas Klingl & Julia Legen & Christian Schmitz-Linneweber & Hinrik Plaggenborg & Jediael Z. Y. Ng &, 2025. "A truncated variant of the ribosome-associated trigger factor specifically contributes to plant chloroplast ribosome biogenesis," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    2. Yuki Kagaya & Zicong Zhang & Nabil Ibtehaz & Xiao Wang & Tsukasa Nakamura & Pranav Deep Punuru & Daisuke Kihara, 2025. "NuFold: end-to-end approach for RNA tertiary structure prediction with flexible nucleobase center representation," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    3. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative Artificial Intelligence," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, pages 7-46, National Bureau of Economic Research, Inc.
    4. Jun-Yu Si & Yuan-Mei Chen & Ye-Hui Sun & Meng-Xue Gu & Mei-Ling Huang & Lu-Lu Shi & Xiao Yu & Xiao Yang & Qing Xiong & Cheng-Bao Ma & Peng Liu & Zheng-Li Shi & Huan Yan, 2024. "Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Zhao-Shan Chen & Hsiang-Chi Huang & Xiangkun Wang & Karin Schön & Yane Jia & Michael Lebens & Danica F. Besavilla & Janarthan R. Murti & Yanhong Ji & Aishe A. Sarshad & Guohua Deng & Qiyun Zhu & David, 2025. "Influenza A Virus H7 nanobody recognizes a conserved immunodominant epitope on hemagglutinin head and confers heterosubtypic protection," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    8. Sourav Nayak & Thomas J. Peto & Michal Kucharski & Rupam Tripura & James J. Callery & Duong Tien Quang Huy & Mathieu Gendrot & Dysoley Lek & Ho Dang Trung Nghia & Rob W. Pluijm & Nguyen Dong & Le Than, 2024. "Population genomics and transcriptomics of Plasmodium falciparum in Cambodia and Vietnam uncover key components of the artemisinin resistance genetic background," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Xiaoke Yang & Mingqi Zhu & Xue Lu & Yuxin Wang & Junyu Xiao, 2024. "Architecture and activation of human muscle phosphorylase kinase," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Efren Garcia-Maldonado & Andrew D. Huber & Sergio C. Chai & Stanley Nithianantham & Yongtao Li & Jing Wu & Shyaron Poudel & Darcie J. Miller & Jayaraman Seetharaman & Taosheng Chen, 2024. "Chemical manipulation of an activation/inhibition switch in the nuclear receptor PXR," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Kristy Rochon & Brianna L. Bauer & Nathaniel A. Roethler & Yuli Buckley & Chih-Chia Su & Wei Huang & Rajesh Ramachandran & Maria S. K. Stoll & Edward W. Yu & Derek J. Taylor & Jason A. Mears, 2024. "Structural basis for regulated assembly of the mitochondrial fission GTPase Drp1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Katherine A. Ray & Joshua D. Lutgens & Ramesh Bista & Jie Zhang & Ronak R. Desai & Melissa Hirsch & Takeshi Miyazawa & Antonio Cordova & Adrian T. Keatinge-Clay, 2024. "Assessing and harnessing updated polyketide synthase modules through combinatorial engineering," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Fan Lu & Liang Zhu & Thomas Bromberger & Jun Yang & Qiannan Yang & Jianmin Liu & Edward F. Plow & Markus Moser & Jun Qin, 2022. "Mechanism of integrin activation by talin and its cooperation with kindlin," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    14. Zengyu Shao & Jiuwei Lu & Nelli Khudaverdyan & Jikui Song, 2024. "Multi-layered heterochromatin interaction as a switch for DIM2-mediated DNA methylation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    15. Yudong Gao & Daichi Shonai & Matthew Trn & Jieqing Zhao & Erik J. Soderblom & S. Alexandra Garcia-Moreno & Charles A. Gersbach & William C. Wetsel & Geraldine Dawson & Dmitry Velmeshev & Yong-hui Jian, 2024. "Proximity analysis of native proteomes reveals phenotypic modifiers in a mouse model of autism and related neurodevelopmental conditions," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    16. Martin F. Peter & Christian Gebhardt & Rebecca Mächtel & Gabriel G. Moya Muñoz & Janin Glaenzer & Alessandra Narducci & Gavin H. Thomas & Thorben Cordes & Gregor Hagelueken, 2022. "Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    17. Morié Ishida & Adriana E. Golding & Tal Keren-Kaplan & Yan Li & Tamas Balla & Juan S. Bonifacino, 2024. "ARMH3 is an ARL5 effector that promotes PI4KB-catalyzed PI4P synthesis at the trans-Golgi network," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    18. Jutta Diessl & Jens Berndtsson & Filomena Broeskamp & Lukas Habernig & Verena Kohler & Carmela Vazquez-Calvo & Arpita Nandy & Carlotta Peselj & Sofia Drobysheva & Ludovic Pelosi & F.-Nora Vögtle & Fab, 2022. "Manganese-driven CoQ deficiency," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Alexander Kroll & Sahasra Ranjan & Martin K. M. Engqvist & Martin J. Lercher, 2023. "A general model to predict small molecule substrates of enzymes based on machine and deep learning," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Lisa-Marie Appel & Vedran Franke & Johannes Benedum & Irina Grishkovskaya & Xué Strobl & Anton Polyansky & Gregor Ammann & Sebastian Platzer & Andrea Neudolt & Anna Wunder & Lena Walch & Stefanie Kais, 2023. "The SPOC domain is a phosphoserine binding module that bridges transcription machinery with co- and post-transcriptional regulators," Nature Communications, Nature, vol. 14(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54812-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.