IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26208-9.html
   My bibliography  Save this article

The RNA helicase Dbp7 promotes domain V/VI compaction and stabilization of inter-domain interactions during early 60S assembly

Author

Listed:
  • Gerald Ryan R. Aquino

    (University Medical Center Göttingen)

  • Philipp Hackert

    (University Medical Center Göttingen)

  • Nicolai Krogh

    (University of Copenhagen)

  • Kuan-Ting Pan

    (Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry
    Johann Wolfgang Goethe University
    Frankfurt Cancer Institute, Goethe University)

  • Mariam Jaafar

    (Université de Toulouse, CNRS, UPS)

  • Anthony K. Henras

    (Université de Toulouse, CNRS, UPS)

  • Henrik Nielsen

    (University of Copenhagen
    Nord University)

  • Henning Urlaub

    (Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry
    University Medical Center Göttingen)

  • Katherine E. Bohnsack

    (University Medical Center Göttingen)

  • Markus T. Bohnsack

    (University Medical Center Göttingen
    Georg-August-University)

Abstract

Early pre-60S ribosomal particles are poorly characterized, highly dynamic complexes that undergo extensive rRNA folding and compaction concomitant with assembly of ribosomal proteins and exchange of assembly factors. Pre-60S particles contain numerous RNA helicases, which are likely regulators of accurate and efficient formation of appropriate rRNA structures. Here we reveal binding of the RNA helicase Dbp7 to domain V/VI of early pre-60S particles in yeast and show that in the absence of this protein, dissociation of the Npa1 scaffolding complex, release of the snR190 folding chaperone, recruitment of the A3 cluster factors and binding of the ribosomal protein uL3 are impaired. uL3 is critical for formation of the peptidyltransferase center (PTC) and is responsible for stabilizing interactions between the 5′ and 3′ ends of the 25S, an essential pre-requisite for subsequent pre-60S maturation events. Highlighting the importance of pre-ribosome remodeling by Dbp7, our data suggest that in the absence of Dbp7 or its catalytic activity, early pre-ribosomal particles are targeted for degradation.

Suggested Citation

  • Gerald Ryan R. Aquino & Philipp Hackert & Nicolai Krogh & Kuan-Ting Pan & Mariam Jaafar & Anthony K. Henras & Henrik Nielsen & Henning Urlaub & Katherine E. Bohnsack & Markus T. Bohnsack, 2021. "The RNA helicase Dbp7 promotes domain V/VI compaction and stabilization of inter-domain interactions during early 60S assembly," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26208-9
    DOI: 10.1038/s41467-021-26208-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26208-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26208-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yi Zhou & Sharmishtha Musalgaonkar & Arlen W. Johnson & David W. Taylor, 2019. "Tightly-orchestrated rearrangements govern catalytic center assembly of the ribosome," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. François Dragon & Jennifer E. G. Gallagher & Patricia A. Compagnone-Post & Brianna M. Mitchell & Kara A. Porwancher & Karen A. Wehner & Steven Wormsley & Robert E. Settlage & Jeffrey Shabanowitz & Yvo, 2002. "A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis," Nature, Nature, vol. 417(6892), pages 967-970, June.
    3. Shan Wu & Beril Tutuncuoglu & Kaige Yan & Hailey Brown & Yixiao Zhang & Dan Tan & Michael Gamalinda & Yi Yuan & Zhifei Li & Jelena Jakovljevic & Chengying Ma & Jianlin Lei & Meng-Qiu Dong & John L. Wo, 2016. "Diverse roles of assembly factors revealed by structures of late nuclear pre-60S ribosomes," Nature, Nature, vol. 534(7605), pages 133-137, June.
    4. Lukas Brüning & Philipp Hackert & Roman Martin & Jimena Davila Gallesio & Gerald Ryan R. Aquino & Henning Urlaub & Katherine E. Sloan & Markus T. Bohnsack, 2018. "RNA helicases mediate structural transitions and compositional changes in pre-ribosomal complexes," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    5. Mariam Jaafar & Julia Contreras & Carine Dominique & Sara Martín-Villanueva & Régine Capeyrou & Patrice Vitali & Olga Rodríguez-Galán & Carmen Velasco & Odile Humbert & Nicholas J. Watkins & Eduardo V, 2021. "Association of snR190 snoRNA chaperone with early pre-60S particles is regulated by the RNA helicase Dbp7 in yeast," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    6. Zahra Assur Sanghai & Linamarie Miller & Kelly R. Molloy & Jonas Barandun & Mirjam Hunziker & Malik Chaker-Margot & Junjie Wang & Brian T. Chait & Sebastian Klinge, 2018. "Modular assembly of the nucleolar pre-60S ribosomal subunit," Nature, Nature, vol. 556(7699), pages 126-129, April.
    7. Elena Burlacu & Fredrik Lackmann & Lisbeth-Carolina Aguilar & Sergey Belikov & Rob van Nues & Christian Trahan & Ralph D. Hector & Nicholas Dominelli-Whiteley & Scott L. Cockroft & Lars Wieslander & M, 2017. "High-throughput RNA structure probing reveals critical folding events during early 60S ribosome assembly in yeast," Nature Communications, Nature, vol. 8(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Qin & Simon M. Lauer & Annika Balke & Carlos H. Vieira-Vieira & Jörg Bürger & Thorsten Mielke & Matthias Selbach & Patrick Scheerer & Christian M. T. Spahn & Rainer Nikolay, 2023. "Cryo-EM captures early ribosome assembly in action," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Lisa Kofler & Lorenz Grundmann & Magdalena Gerhalter & Michael Prattes & Juliane Merl-Pham & Gertrude Zisser & Irina Grishkovskaya & Victor-Valentin Hodirnau & Martin Vareka & Rolf Breinbauer & Stefan, 2024. "The novel ribosome biogenesis inhibitor usnic acid blocks nucleolar pre-60S maturation," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Kamil Sekulski & Victor Emmanuel Cruz & Christine S. Weirich & Jan P. Erzberger, 2023. "rRNA methylation by Spb1 regulates the GTPase activity of Nog2 during 60S ribosomal subunit assembly," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Weilin Feng & Zier Guo & Qunli Jin & Yingyue Shen & Tingting Song & Mei Wang & Jun Zhang & Lijun Fan & Weiming Cai, 2024. "A Comparative Transcriptomic and Proteomic Analysis of the Pileus of Agaricus bisporus During Its Different Developmental Phases," Agriculture, MDPI, vol. 14(12), pages 1-19, December.
    5. Victor E. Cruz & Christine S. Weirich & Nagesh Peddada & Jan P. Erzberger, 2024. "The DEAD-box ATPase Dbp10/DDX54 initiates peptidyl transferase center formation during 60S ribosome biogenesis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Xiuqin Wang & Gongcheng Hu & Lisha Wang & Yuli Lu & Yanjiang Liu & Shengxiong Yang & Junzhi Liao & Qian Zhao & Qiuling Huang & Wentao Wang & Wenjing Guo & Heying Li & Yu Fu & Yawei Song & Qingqing Cai, 2024. "DEAD-box RNA helicase 10 is required for 18S rRNA maturation by controlling the release of U3 snoRNA from pre-rRNA in embryonic stem cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Sébastien Durand & Marion Bruelle & Fleur Bourdelais & Bigitha Bennychen & Juliana Blin-Gonthier & Caroline Isaac & Aurélia Huyghe & Sylvie Martel & Antoine Seyve & Christophe Vanbelle & Annie Adrait , 2023. "RSL24D1 sustains steady-state ribosome biogenesis and pluripotency translational programs in embryonic stem cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Konstantin Axt & Sarah L French & Ann L Beyer & David Tollervey, 2014. "Kinetic Analysis Demonstrates a Requirement for the Rat1 Exonuclease in Cotranscriptional Pre-rRNA Cleavage," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-11, February.
    9. Johan Busselez & Geraldine Koenig & Carine Dominique & Torben Klos & Deepika Velayudhan & Piotr Sosnowski & Nils Marechal & Corinne Crucifix & Hugo Gizardin-Fredon & Sarah Cianferani & Benjamin Albert, 2024. "Remodelling of Rea1 linker domain drives the removal of assembly factors from pre-ribosomal particles," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Chengying Ma & Damu Wu & Qian Chen & Ning Gao, 2022. "Structural dynamics of AAA + ATPase Drg1 and mechanism of benzo-diazaborine inhibition," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Kai Sheng & Ning Li & Jessica N. Rabuck-Gibbons & Xiyu Dong & Dmitry Lyumkis & James R. Williamson, 2023. "Assembly landscape for the bacterial large ribosomal subunit," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Mariam Jaafar & Julia Contreras & Carine Dominique & Sara Martín-Villanueva & Régine Capeyrou & Patrice Vitali & Olga Rodríguez-Galán & Carmen Velasco & Odile Humbert & Nicholas J. Watkins & Eduardo V, 2021. "Association of snR190 snoRNA chaperone with early pre-60S particles is regulated by the RNA helicase Dbp7 in yeast," Nature Communications, Nature, vol. 12(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26208-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.