IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-08880-0.html
   My bibliography  Save this article

Tightly-orchestrated rearrangements govern catalytic center assembly of the ribosome

Author

Listed:
  • Yi Zhou

    (University of Texas at Austin)

  • Sharmishtha Musalgaonkar

    (University of Texas at Austin)

  • Arlen W. Johnson

    (University of Texas at Austin
    University of Texas at Austin)

  • David W. Taylor

    (University of Texas at Austin
    University of Texas at Austin
    University of Texas at Austin
    LIVESTRONG Cancer Institutes, Dell Medical School)

Abstract

The catalytic activity of the ribosome is mediated by RNA, yet proteins are essential for the function of the peptidyl transferase center (PTC). In eukaryotes, final assembly of the PTC occurs in the cytoplasm by insertion of the ribosomal protein Rpl10 (uL16). We determine structures of six intermediates in late nuclear and cytoplasmic maturation of the large subunit that reveal a tightly-choreographed sequence of protein and RNA rearrangements controlling the insertion of Rpl10. We also determine the structure of the biogenesis factor Yvh1 and show how it promotes assembly of the P stalk, a critical element for recruitment of GTPases that drive translation. Together, our structures provide a blueprint for final assembly of a functional ribosome.

Suggested Citation

  • Yi Zhou & Sharmishtha Musalgaonkar & Arlen W. Johnson & David W. Taylor, 2019. "Tightly-orchestrated rearrangements govern catalytic center assembly of the ribosome," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08880-0
    DOI: 10.1038/s41467-019-08880-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-08880-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-08880-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Qin & Simon M. Lauer & Annika Balke & Carlos H. Vieira-Vieira & Jörg Bürger & Thorsten Mielke & Matthias Selbach & Patrick Scheerer & Christian M. T. Spahn & Rainer Nikolay, 2023. "Cryo-EM captures early ribosome assembly in action," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Gerald Ryan R. Aquino & Philipp Hackert & Nicolai Krogh & Kuan-Ting Pan & Mariam Jaafar & Anthony K. Henras & Henrik Nielsen & Henning Urlaub & Katherine E. Bohnsack & Markus T. Bohnsack, 2021. "The RNA helicase Dbp7 promotes domain V/VI compaction and stabilization of inter-domain interactions during early 60S assembly," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    3. Sébastien Durand & Marion Bruelle & Fleur Bourdelais & Bigitha Bennychen & Juliana Blin-Gonthier & Caroline Isaac & Aurélia Huyghe & Sylvie Martel & Antoine Seyve & Christophe Vanbelle & Annie Adrait , 2023. "RSL24D1 sustains steady-state ribosome biogenesis and pluripotency translational programs in embryonic stem cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Kamil Sekulski & Victor Emmanuel Cruz & Christine S. Weirich & Jan P. Erzberger, 2023. "rRNA methylation by Spb1 regulates the GTPase activity of Nog2 during 60S ribosomal subunit assembly," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Lisa Kofler & Lorenz Grundmann & Magdalena Gerhalter & Michael Prattes & Juliane Merl-Pham & Gertrude Zisser & Irina Grishkovskaya & Victor-Valentin Hodirnau & Martin Vareka & Rolf Breinbauer & Stefan, 2024. "The novel ribosome biogenesis inhibitor usnic acid blocks nucleolar pre-60S maturation," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08880-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.