IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35457-1.html
   My bibliography  Save this article

Phase diagrams guide synthesis of highly ordered intermetallic electrocatalysts: separating alloying and ordering stages

Author

Listed:
  • Wei-Jie Zeng

    (University of Science and Technology of China)

  • Chang Wang

    (Chinese Academy of Sciences)

  • Qiang-Qiang Yan

    (University of Science and Technology of China)

  • Peng Yin

    (University of Science and Technology of China)

  • Lei Tong

    (University of Science and Technology of China)

  • Hai-Wei Liang

    (University of Science and Technology of China)

Abstract

Supported platinum intermetallic compound catalysts have attracted considerable attention owing to their remarkable activities and durability for the oxygen reduction reaction in proton-exchange membrane fuel cells. However, the synthesis of highly ordered intermetallic compound catalysts remains a challenge owing to the limited understanding of their formation mechanism under high-temperature conditions. In this study, we perform in-situ high-temperature X-ray diffraction studies to investigate the structural evolution in the impregnation synthesis of carbon-supported intermetallic catalysts. We identify the phase-transition-temperature (TPT)-dependent evolution process that involve concurrent (for alloys with high TPT) or separate (for alloys with low TPT) alloying/ordering stages. Accordingly, we realize the synthesis of highly ordered intermetallic catalysts by adopting a separate annealing protocol with a high-temperature alloying stage and a low-temperature ordering stage, which display a high mass activity of 0.96 A mgPt–1 at 0.9 V in H2–O2 fuel cells and a remarkable durability.

Suggested Citation

  • Wei-Jie Zeng & Chang Wang & Qiang-Qiang Yan & Peng Yin & Lei Tong & Hai-Wei Liang, 2022. "Phase diagrams guide synthesis of highly ordered intermetallic electrocatalysts: separating alloying and ordering stages," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35457-1
    DOI: 10.1038/s41467-022-35457-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35457-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35457-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark K. Debe, 2012. "Electrocatalyst approaches and challenges for automotive fuel cells," Nature, Nature, vol. 486(7401), pages 43-51, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ru-Yang Shao & Xiao-Chu Xu & Zhen-Hua Zhou & Wei-Jie Zeng & Tian-Wei Song & Peng Yin & Ang Li & Chang-Song Ma & Lei Tong & Yuan Kong & Hai-Wei Liang, 2023. "Promoting ordering degree of intermetallic fuel cell catalysts by low-melting-point metal doping," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Xiao Han & Yanan Zhou & Xiaolin Tai & Geng Wu & Cai Chen & Xun Hong & Lei Tong & Fangfang Xu & Hai-Wei Liang & Yue Lin, 2024. "In-situ atomic tracking of intermetallic compound formation during thermal annealing," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Rui & Zhong, Di & Lan, Shunbo & Guo, Rong & Ma, Yunyang & Cai, Xin, 2021. "Experimental validation for enhancement of PEMFC cold start performance: Based on the optimization of micro porous layer," Applied Energy, Elsevier, vol. 300(C).
    2. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    3. Jung, Chi-Young & Yi, Jae-You & Yi, Sung-Chul, 2014. "On the role of the silica-containing catalyst layer for proton exchange membrane fuel cells," Energy, Elsevier, vol. 68(C), pages 794-800.
    4. Huang, Chung-Neng & Chen, Yui-Sung, 2017. "Design of magnetic flywheel control for performance improvement of fuel cells used in vehicles," Energy, Elsevier, vol. 118(C), pages 840-852.
    5. Wang, Qing & Han, Ning & Bokhari, Awais & Li, Xue & Cao, Yue & Asif, Saira & Shen, Zhengfeng & Si, Weimeng & Wang, Fagang & Klemeš, Jiří Jaromír & Zhao, Xiaolin, 2022. "Insights into MXenes-based electrocatalysts for oxygen reduction," Energy, Elsevier, vol. 255(C).
    6. Pei, Pucheng & Wu, Ziyao & Li, Yuehua & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Improved methods to measure hydrogen crossover current in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 215(C), pages 338-347.
    7. Faria, Lourenço Galvão Diniz & Andersen, Maj Munch, 2017. "Sectoral patterns versus firm-level heterogeneity - The dynamics of eco-innovation strategies in the automotive sector," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 266-281.
    8. Liu, Jing & Mi, Liwei & Xing, Yanan & Wang, Tianfu & Wang, Fu, 2020. "Construction of Ti3C2 supported hybrid Co3O4/NCNTs composite as an efficient oxygen reduction electrocatalyst," Renewable Energy, Elsevier, vol. 160(C), pages 1168-1173.
    9. Xia, Zhangxun & Sun, Ruili & Jing, Fenning & Wang, Suli & Sun, Hai & Sun, Gongquan, 2018. "Modeling and optimization of Scaffold-like macroporous electrodes for highly efficient direct methanol fuel cells," Applied Energy, Elsevier, vol. 221(C), pages 239-248.
    10. Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
    11. Li, Yong & Song, Jian & Yang, Jie, 2015. "Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 66-77.
    12. Li, Xiang & Tang, Fumin & Wang, Qianqian & Li, Bing & Dai, Haifeng & Chang, Guofeng & Zhang, Cunman & Ming, Pingwen, 2023. "Effect of cathode catalyst layer on proton exchange membrane fuel cell performance: Considering the spatially variable distribution," Renewable Energy, Elsevier, vol. 212(C), pages 644-654.
    13. Zhang, Ruiyuan & Min, Ting & Chen, Li & Li, Hailong & Yan, Jinyue & Tao, Wen-Quan, 2022. "Pore-scale study of effects of relative humidity on reactive transport processes in catalyst layers in PEMFC," Applied Energy, Elsevier, vol. 323(C).
    14. Xiaokang Yang & Jiaqi Sun & Guang Jiang & Shucheng Sun & Zhigang Shao & Hongmei Yu & Fangwei Duan & Yingxuan Yang, 2021. "Experimental Study on Critical Membrane Water Content of Proton Exchange Membrane Fuel Cells for Cold Storage at −50 °C," Energies, MDPI, vol. 14(15), pages 1-17, July.
    15. Jiayue Zhang & Yikui Gao & Di Liu & Jing-Shan Zhao & Jie Wang, 2023. "Discharge domains regulation and dynamic processes of direct-current triboelectric nanogenerator," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Lochner, Tim & Hallitzky, Laurens & Perchthaler, Markus & Obermaier, Michael & Sabawa, Jarek & Enz, Simon & Bandarenka, Aliaksandr S., 2020. "Local degradation effects in automotive size membrane electrode assemblies under realistic operating conditions," Applied Energy, Elsevier, vol. 260(C).
    17. Samir De, Biswajit & Cunningham, Joshua & Khare, Neeraj & Luo, Jing-Li & Elias, Anastasia & Basu, Suddhasatwa, 2022. "Hydrogen generation and utilization in a two-phase flow membraneless microfluidic electrolyzer-fuel cell tandem operation for micropower application," Applied Energy, Elsevier, vol. 305(C).
    18. Sara Bakhtavar & Mehdi Mehrpooya & Mahboobeh Manoochehri & Mehrnoosh Karimkhani, 2022. "Proposal of a Facile Method to Fabricate a Multi-Dope Multiwall Carbon Nanotube as a Metal-Free Electrocatalyst for the Oxygen Reduction Reaction," Sustainability, MDPI, vol. 14(2), pages 1-17, January.
    19. Yuzhen Xia & Hangwei Lei & Xiaojun Wu & Guilin Hu & Hao Pan & Baizeng Fang, 2023. "Design of New Test System for Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 16(2), pages 1-11, January.
    20. Caleb Gyan-Barimah & Jagannath Sai Pavan Mantha & Ha-Young Lee & Yi Wei & Cheol-Hwan Shin & Muhammad Irfansyah Maulana & Junki Kim & Graeme Henkelman & Jong-Sung Yu, 2024. "High vacancy formation energy boosts the stability of structurally ordered PtMg in hydrogen fuel cells," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35457-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.