IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3122-d182219.html
   My bibliography  Save this article

A Comprehensive Review of Nanomaterials Developed Using Electrophoresis Process for High-Efficiency Energy Conversion and Storage Systems

Author

Listed:
  • Seok Hee Lee

    (Department of Chemical and Biological Engineering, Gachon University, Seongnam-si 13120, Korea
    Materials Research and Education Center, Auburn University, Auburn, AL 36849, USA
    These authors contributed equally to this work.)

  • Sung Pil Woo

    (Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea
    These authors contributed equally to this work.)

  • Nitul Kakati

    (Department of Chemical and Biological Engineering, Gachon University, Seongnam-si 13120, Korea)

  • Dong-Joo Kim

    (Materials Research and Education Center, Auburn University, Auburn, AL 36849, USA)

  • Young Soo Yoon

    (Department of Chemical and Biological Engineering, Gachon University, Seongnam-si 13120, Korea)

Abstract

Research carried out over the last few decades has shown that nanomaterials for energy storage and conversion require higher performance and greater stability. The nanomaterials synthesized by diverse techniques, such as sol-gel, hydrothermal, microwave, and co-precipitation methods, have brought energy storage and conversion systems to the center stage of practical application but they still cannot meet the capacity and mass production demands. Most reviews in the literature discuss in detail the issues related to nanomaterials with a range of structures synthesized using the above methods to enhance the performance. On the other hand, there have been few critical examinations of use of the electrophoresis process for the synthesis of nanomaterials for energy storage and conversion. The nanomaterials synthesized by electrophoresis processes related to colloidal interface science in the literature are compared according to the conditions to identify promising materials that are being or could be developed to satisfy the capacity and mass production demands. Therefore, a literature survey is of the use of electrophoresis deposition processes to synthesize nanomaterials for energy storage and conversion and the correlations of the electrophoresis conditions and properties of the resulting nanomaterials from a practical point of view.

Suggested Citation

  • Seok Hee Lee & Sung Pil Woo & Nitul Kakati & Dong-Joo Kim & Young Soo Yoon, 2018. "A Comprehensive Review of Nanomaterials Developed Using Electrophoresis Process for High-Efficiency Energy Conversion and Storage Systems," Energies, MDPI, vol. 11(11), pages 1-81, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3122-:d:182219
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3122/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3122/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark K. Debe, 2012. "Electrocatalyst approaches and challenges for automotive fuel cells," Nature, Nature, vol. 486(7401), pages 43-51, June.
    2. P. Poizot & S. Laruelle & S. Grugeon & L. Dupont & J-M. Tarascon, 2000. "Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries," Nature, Nature, vol. 407(6803), pages 496-499, September.
    3. Edwards, P.P. & Kuznetsov, V.L. & David, W.I.F. & Brandon, N.P., 2008. "Hydrogen and fuel cells: Towards a sustainable energy future," Energy Policy, Elsevier, vol. 36(12), pages 4356-4362, December.
    4. By Lung-Hao Hu & Feng-Yu Wu & Cheng-Te Lin & Andrei N. Khlobystov & Lain-Jong Li, 2013. "Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity," Nature Communications, Nature, vol. 4(1), pages 1-7, June.
    5. Hongtao Sun & Guoqing Xin & Tao Hu & Mingpeng Yu & Dali Shao & Xiang Sun & Jie Lian, 2014. "High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    6. Byoungwoo Kang & Gerbrand Ceder, 2009. "Battery materials for ultrafast charging and discharging," Nature, Nature, vol. 458(7235), pages 190-193, March.
    7. Ji-Jing Xu & Zhong-Li Wang & Dan Xu & Lei-Lei Zhang & Xin-Bo Zhang, 2013. "Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries," Nature Communications, Nature, vol. 4(1), pages 1-10, December.
    8. M. Armand & J.-M. Tarascon, 2008. "Building better batteries," Nature, Nature, vol. 451(7179), pages 652-657, February.
    9. Su, Y. & Zhitomirsky, I., 2015. "Asymmetric electrochemical supercapacitor, based on polypyrrole coated carbon nanotube electrodes," Applied Energy, Elsevier, vol. 153(C), pages 48-55.
    10. Lei Liao & Yung-Chen Lin & Mingqiang Bao & Rui Cheng & Jingwei Bai & Yuan Liu & Yongquan Qu & Kang L. Wang & Yu Huang & Xiangfeng Duan, 2010. "High-speed graphene transistors with a self-aligned nanowire gate," Nature, Nature, vol. 467(7313), pages 305-308, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjuan Yang & Mohamed Nawwar & Igor Zhitomirsky, 2022. "Facile Route for Fabrication of Ferrimagnetic Mn 3 O 4 Spinel Material for Supercapacitors with Enhanced Capacitance," Energies, MDPI, vol. 15(5), pages 1-12, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    2. Yang-Soo Kim & Yonghoon Cho & Paul M. Nogales & Soon-Ki Jeong, 2019. "NbO 2 as a Noble Zero-Strain Material for Li-Ion Batteries: Electrochemical Redox Behavior in a Nonaqueous Solution," Energies, MDPI, vol. 12(15), pages 1-7, August.
    3. Mohideen, Mohamedazeem M. & Liu, Yong & Ramakrishna, Seeram, 2020. "Recent progress of carbon dots and carbon nanotubes applied in oxygen reduction reaction of fuel cell for transportation," Applied Energy, Elsevier, vol. 257(C).
    4. Xing Zhao & Peng Wang & Yan Wang & Peipei Chao & Honglei Dong, 2023. "Coprecipitation Synthesis and Impedance Studies on Electrode Interface Characteristics of 0.5Li 2 MnO 3 ·0.5Li(Ni 0.44 Mn 0.44 Co 0.12 )O 2 Cathode Material," Energies, MDPI, vol. 16(16), pages 1-16, August.
    5. Yang, Yang & Yuan, Wei & Zhang, Xiaoqing & Wang, Chun & Yuan, Yuhang & Huang, Yao & Ye, Yintong & Qiu, Zhiqiang & Tang, Yong, 2020. "A review on FexOy-based materials for advanced lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    6. Gangbin Yan & George Kim & Renliang Yuan & Eli Hoenig & Fengyuan Shi & Wenxiang Chen & Yu Han & Qian Chen & Jian-Min Zuo & Wei Chen & Chong Liu, 2022. "The role of solid solutions in iron phosphate-based electrodes for selective electrochemical lithium extraction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Zhou, Jing & Cao, Jiamu & Zhang, Yufeng & Liu, Junfeng & Chen, Junyu & Li, Mingxue & Wang, Weiqi & Liu, Xiaowei, 2021. "Overcoming undesired fuel crossover: Goals of methanol-resistant modification of polymer electrolyte membranes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Ying Liu & Xueying Li & Anupriya K. Haridas & Yuanzheng Sun & Jungwon Heo & Jou-Hyeon Ahn & Younki Lee, 2020. "Biomass-Derived Graphitic Carbon Encapsulated Fe/Fe 3 C Composite as an Anode Material for High-Performance Lithium Ion Batteries," Energies, MDPI, vol. 13(4), pages 1-10, February.
    9. Wang, WenWei & Yang, Sheng & Lin, Cheng, 2017. "Clay-like mechanical properties for the jellyroll of cylindrical Lithium-ion cells," Applied Energy, Elsevier, vol. 196(C), pages 249-258.
    10. Li, Qun & Yin, Longwei & Ma, Jingyun & Li, Zhaoqiang & Zhang, Zhiwei & Chen, Ailian & Li, Caixia, 2015. "Mesoporous silicon/carbon hybrids with ordered pore channel retention and tunable carbon incorporated content as high performance anode materials for lithium-ion batteries," Energy, Elsevier, vol. 85(C), pages 159-166.
    11. Jiang, Z.Y. & Qu, Z.G., 2019. "Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study," Applied Energy, Elsevier, vol. 242(C), pages 378-392.
    12. Lin, Rui & Zhong, Di & Lan, Shunbo & Guo, Rong & Ma, Yunyang & Cai, Xin, 2021. "Experimental validation for enhancement of PEMFC cold start performance: Based on the optimization of micro porous layer," Applied Energy, Elsevier, vol. 300(C).
    13. Katla, Daria & Bartela, Łukasz & Skorek-Osikowska, Anna, 2020. "Evaluation of electricity generation subsystem of power-to-gas-to-power unit using gas expander and heat recovery steam generator," Energy, Elsevier, vol. 212(C).
    14. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Freier, Daria & Ramirez-Iniguez, Roberto & Jafry, Tahseen & Muhammad-Sukki, Firdaus & Gamio, Carlos, 2018. "A review of optical concentrators for portable solar photovoltaic systems for developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 957-968.
    16. Entwistle, Jake & Ge, Ruihuan & Pardikar, Kunal & Smith, Rachel & Cumming, Denis, 2022. "Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    17. Yohwan Choi & Hongseok Kim, 2016. "Optimal Scheduling of Energy Storage System for Self-Sustainable Base Station Operation Considering Battery Wear-Out Cost," Energies, MDPI, vol. 9(6), pages 1-19, June.
    18. Lili Zhang & Ning Zhang & Huishan Shang & Zhiyi Sun & Zihao Wei & Jingtao Wang & Yuanting Lei & Xiaochen Wang & Dan Wang & Yafei Zhao & Zhongti Sun & Fang Zhang & Xu Xiang & Bing Zhang & Wenxing Chen, 2024. "High-density asymmetric iron dual-atom sites for efficient and stable electrochemical water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Jung, Chi-Young & Yi, Jae-You & Yi, Sung-Chul, 2014. "On the role of the silica-containing catalyst layer for proton exchange membrane fuel cells," Energy, Elsevier, vol. 68(C), pages 794-800.
    20. Samuel C. Bayham & Andrew Tong & Mandar Kathe & Liang-Shih Fan, 2016. "Chemical looping technology for energy and chemical production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(2), pages 216-241, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3122-:d:182219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.