IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34973-4.html
   My bibliography  Save this article

Controlling Floquet states on ultrashort time scales

Author

Listed:
  • Matteo Lucchini

    (Politecnico di Milano
    IFN-CNR)

  • Fabio Medeghini

    (Politecnico di Milano)

  • Yingxuan Wu

    (Politecnico di Milano
    IFN-CNR)

  • Federico Vismarra

    (Politecnico di Milano
    IFN-CNR)

  • Rocío Borrego-Varillas

    (IFN-CNR)

  • Aurora Crego

    (IFN-CNR)

  • Fabio Frassetto

    (IFN-CNR)

  • Luca Poletto

    (IFN-CNR)

  • Shunsuke A. Sato

    (University of Tsukuba
    Max Planck Institute for the Structure and Dynamics of Matter)

  • Hannes Hübener

    (Max Planck Institute for the Structure and Dynamics of Matter)

  • Umberto Giovannini

    (Max Planck Institute for the Structure and Dynamics of Matter
    Università degli Studi di Palermo, Dipartimento di Fisica e Chimica-Emilio Segrè)

  • Ángel Rubio

    (Max Planck Institute for the Structure and Dynamics of Matter
    The Flatiron Institute)

  • Mauro Nisoli

    (Politecnico di Milano
    IFN-CNR)

Abstract

The advent of ultrafast laser science offers the unique opportunity to combine Floquet engineering with extreme time resolution, further pushing the optical control of matter into the petahertz domain. However, what is the shortest driving pulse for which Floquet states can be realised remains an unsolved matter, thus limiting the application of Floquet theory to pulses composed by many optical cycles. Here we ionized Ne atoms with few-femtosecond pulses of selected time duration and show that a Floquet state can be observed already with a driving field that lasts for only 10 cycles. For shorter pulses, down to 2 cycles, the finite lifetime of the driven state can still be explained using an analytical model based on Floquet theory. By demonstrating that the amplitude and number of Floquet-like sidebands in the photoelectron spectrum can be controlled not only with the driving laser pulse intensity and frequency, but also by its duration, our results add a new lever to the toolbox of Floquet engineering.

Suggested Citation

  • Matteo Lucchini & Fabio Medeghini & Yingxuan Wu & Federico Vismarra & Rocío Borrego-Varillas & Aurora Crego & Fabio Frassetto & Luca Poletto & Shunsuke A. Sato & Hannes Hübener & Umberto Giovannini & , 2022. "Controlling Floquet states on ultrashort time scales," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34973-4
    DOI: 10.1038/s41467-022-34973-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34973-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34973-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matteo Lucchini & Shunsuke A. Sato & Giacinto D. Lucarelli & Bruno Moio & Giacomo Inzani & Rocío Borrego-Varillas & Fabio Frassetto & Luca Poletto & Hannes Hübener & Umberto Giovannini & Angel Rubio &, 2021. "Unravelling the intertwined atomic and bulk nature of localised excitons by attosecond spectroscopy," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. M.A. Sentef & M. Claassen & A.F. Kemper & B. Moritz & T. Oka & J.K. Freericks & T.P. Devereaux, 2015. "Theory of Floquet band formation and local pseudospin textures in pump-probe photoemission of graphene," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    3. M. Mitrano & A. Cantaluppi & D. Nicoletti & S. Kaiser & A. Perucchi & S. Lupi & P. Di Pietro & D. Pontiroli & M. Riccò & S. R. Clark & D. Jaksch & A. Cavalleri, 2016. "Possible light-induced superconductivity in K3C60 at high temperature," Nature, Nature, vol. 530(7591), pages 461-464, February.
    4. Sebastian Weidemann & Mark Kremer & Stefano Longhi & Alexander Szameit, 2022. "Topological triple phase transition in non-Hermitian Floquet quasicrystals," Nature, Nature, vol. 601(7893), pages 354-359, January.
    5. Mikael C. Rechtsman & Julia M. Zeuner & Yonatan Plotnik & Yaakov Lumer & Daniel Podolsky & Felix Dreisow & Stefan Nolte & Mordechai Segev & Alexander Szameit, 2013. "Photonic Floquet topological insulators," Nature, Nature, vol. 496(7444), pages 196-200, April.
    6. Marcel Reutzel & Andi Li & Zehua Wang & Hrvoje Petek, 2020. "Coherent multidimensional photoelectron spectroscopy of ultrafast quasiparticle dressing by light," Nature Communications, Nature, vol. 11(1), pages 1-5, December.
    7. Jan Gerrit Horstmann & Hannes Böckmann & Bareld Wit & Felix Kurtz & Gero Storeck & Claus Ropers, 2020. "Coherent control of a surface structural phase transition," Nature, Nature, vol. 583(7815), pages 232-236, July.
    8. Gregor Jotzu & Michael Messer & Rémi Desbuquois & Martin Lebrat & Thomas Uehlinger & Daniel Greif & Tilman Esslinger, 2014. "Experimental realization of the topological Haldane model with ultracold fermions," Nature, Nature, vol. 515(7526), pages 237-240, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Midya Parto & Christian Leefmans & James Williams & Franco Nori & Alireza Marandi, 2023. "Non-Abelian effects in dissipative photonic topological lattices," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Xiao-Chen Sun & Hao Chen & Hua-Shan Lai & Chu-Hao Xia & Cheng He & Yan-Feng Chen, 2023. "Ideal acoustic quantum spin Hall phase in a multi-topology platform," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Yang Luo & Alberto Martin-Jimenez & Michele Pisarra & Fernando Martin & Manish Garg & Klaus Kern, 2023. "Imaging and controlling coherent phonon wave packets in single graphene nanoribbons," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Chenhang Xu & Cheng Jin & Zijing Chen & Qi Lu & Yun Cheng & Bo Zhang & Fengfeng Qi & Jiajun Chen & Xunqing Yin & Guohua Wang & Dao Xiang & Dong Qian, 2023. "Transient dynamics of the phase transition in VO2 revealed by mega-electron-volt ultrafast electron diffraction," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Aaron H. Barajas-Aguilar & Jasen Zion & Ian Sequeira & Andrew Z. Barabas & Takashi Taniguchi & Kenji Watanabe & Eric B. Barrett & Thomas Scaffidi & Javier D. Sanchez-Yamagishi, 2024. "Electrically driven amplification of terahertz acoustic waves in graphene," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Simone Zanotto & Giorgio Biasiol & Paulo V. Santos & Alessandro Pitanti, 2022. "Metamaterial-enabled asymmetric negative refraction of GHz mechanical waves," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Chengzhi Qin & Han Ye & Shulin Wang & Lange Zhao & Menglin Liu & Yinglan Li & Xinyuan Hu & Chenyu Liu & Bing Wang & Stefano Longhi & Peixiang Lu, 2024. "Observation of discrete-light temporal refraction by moving potentials with broken Galilean invariance," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Jun Nishida & Samuel C. Johnson & Peter T. S. Chang & Dylan M. Wharton & Sven A. Dönges & Omar Khatib & Markus B. Raschke, 2022. "Ultrafast infrared nano-imaging of far-from-equilibrium carrier and vibrational dynamics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. T. P. H. Sidiropoulos & N. Palo & D. E. Rivas & A. Summers & S. Severino & M. Reduzzi & J. Biegert, 2023. "Enhanced optical conductivity and many-body effects in strongly-driven photo-excited semi-metallic graphite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Seyed Danial Hashemi & Sunil Mittal, 2024. "Floquet topological dissipative Kerr solitons and incommensurate frequency combs," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Guanghui Cheng & Meng-Hsien Lin & Hung-Ying Chen & Dongli Wang & Zheyan Wang & Wei Qin & Zhenyu Zhang & Changgan Zeng, 2024. "Reversible modulation of superconductivity in thin-film NbSe2 via plasmon coupling," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    12. Zhongqiang Chen & Hongsong Qiu & Xinjuan Cheng & Jizhe Cui & Zuanming Jin & Da Tian & Xu Zhang & Kankan Xu & Ruxin Liu & Wei Niu & Liqi Zhou & Tianyu Qiu & Yequan Chen & Caihong Zhang & Xiaoxiang Xi &, 2024. "Defect-induced helicity dependent terahertz emission in Dirac semimetal PtTe2 thin films," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Malomed, B.A., 2022. "Multidimensional dissipative solitons and solitary vortices," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    14. Yanan Wang & Hai-Xiao Wang & Li Liang & Weiwei Zhu & Longzhen Fan & Zhi-Kang Lin & Feifei Li & Xiao Zhang & Pi-Gang Luan & Yin Poo & Jian-Hua Jiang & Guang-Yu Guo, 2023. "Hybrid topological photonic crystals," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Zhaohui Dong & Xiaoxiong Wu & Yiwen Yang & Penghong Yu & Xianfeng Chen & Luqi Yuan, 2024. "Temporal multilayer structures in discrete physical systems towards arbitrary-dimensional non-Abelian Aharonov-Bohm interferences," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Wu, Zhenkun & Yang, Kaibo & Zhang, Yagang & Ren, Xijun & Wen, Feng & Gu, Yuzong & Guo, Lijun, 2022. "Nonlinear conical diffraction in fractional dimensions with a PT-symmetric optical lattice," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    17. Meng, Hongjuan & Zhou, Yushan & Li, Xiaolin & Ren, Xueping & Wan, Xiaohuan & Zhou, Zhikun & Wang, Wenyuan & Shi, Yuren, 2021. "Gap solitons in Bose–Einstein condensate loaded in a honeycomb optical lattice: Nonlinear dynamical stability, tunneling, and self-trapping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    18. Xiang Xi & Bei Yan & Linyun Yang & Yan Meng & Zhen-Xiao Zhu & Jing-Ming Chen & Ziyao Wang & Peiheng Zhou & Perry Ping Shum & Yihao Yang & Hongsheng Chen & Subhaskar Mandal & Gui-Geng Liu & Baile Zhang, 2023. "Topological antichiral surface states in a magnetic Weyl photonic crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Cao, Xuefei & Wang, Kaile & Yang, Song & Gao, Yuanmei & Cai, Yangjian & Wen, Zengrun, 2024. "Localization and delocalization of light in synthetic photonic lattices with hybrid Bloch-Anderson modulations," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    20. Tang, Qian & Zhang, Yiqi & Kartashov, Yaroslav V. & Li, Yongdong & Konotop, Vladimir V., 2022. "Vector valley Hall edge solitons in superhoneycomb lattices," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34973-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.