IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v180y2024ics0960077924000626.html
   My bibliography  Save this article

Localization and delocalization of light in synthetic photonic lattices with hybrid Bloch-Anderson modulations

Author

Listed:
  • Cao, Xuefei
  • Wang, Kaile
  • Yang, Song
  • Gao, Yuanmei
  • Cai, Yangjian
  • Wen, Zengrun

Abstract

We investigate the localization and delocalization transition in a synthetic mesh lattice (SML) with the hybrid modulations comprising of a gradient phase and phase disorders that are utilized to induce Bloch oscillation and Anderson localization, respectively. On the basis of Bloch oscillation, phase and coupling disorders are introduced in the SML by randomly altering the longitudinal phase and transverse coupling. The results shows that the phase disorder generally washes out the Bloch oscillation with the enlarging randomness. Whereas, the coupling disorder results in increasing number of oscillations initially and causes strong localization with a large random value. When two kinds of disorders are simultaneously added, the optical transition between localization and delocalization are realized by modulating the two strengths of disorders. Our work reveals the interaction of Bloch oscillation and disorders in two discrete systems, which provide a method to achieve optical localization.

Suggested Citation

  • Cao, Xuefei & Wang, Kaile & Yang, Song & Gao, Yuanmei & Cai, Yangjian & Wen, Zengrun, 2024. "Localization and delocalization of light in synthetic photonic lattices with hybrid Bloch-Anderson modulations," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924000626
    DOI: 10.1016/j.chaos.2024.114511
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924000626
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114511?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diederik S. Wiersma & Paolo Bartolini & Ad Lagendijk & Roberto Righini, 1997. "Localization of light in a disordered medium," Nature, Nature, vol. 390(6661), pages 671-673, December.
    2. Shulin Wang & Chengzhi Qin & Weiwei Liu & Bing Wang & Feng Zhou & Han Ye & Lange Zhao & Jianji Dong & Xinliang Zhang & Stefano Longhi & Peixiang Lu, 2022. "High-order dynamic localization and tunable temporal cloaking in ac-electric-field driven synthetic lattices," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Tal Schwartz & Guy Bartal & Shmuel Fishman & Mordechai Segev, 2007. "Transport and Anderson localization in disordered two-dimensional photonic lattices," Nature, Nature, vol. 446(7131), pages 52-55, March.
    4. Sebastian Weidemann & Mark Kremer & Stefano Longhi & Alexander Szameit, 2022. "Topological triple phase transition in non-Hermitian Floquet quasicrystals," Nature, Nature, vol. 601(7893), pages 354-359, January.
    5. Alois Regensburger & Christoph Bersch & Mohammad-Ali Miri & Georgy Onishchukov & Demetrios N. Christodoulides & Ulf Peschel, 2012. "Parity–time synthetic photonic lattices," Nature, Nature, vol. 488(7410), pages 167-171, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chengzhi Qin & Han Ye & Shulin Wang & Lange Zhao & Menglin Liu & Yinglan Li & Xinyuan Hu & Chenyu Liu & Bing Wang & Stefano Longhi & Peixiang Lu, 2024. "Observation of discrete-light temporal refraction by moving potentials with broken Galilean invariance," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Zhaohui Dong & Xiaoxiong Wu & Yiwen Yang & Penghong Yu & Xianfeng Chen & Luqi Yuan, 2024. "Temporal multilayer structures in discrete physical systems towards arbitrary-dimensional non-Abelian Aharonov-Bohm interferences," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Guillaume Ricard & Filip Novkoski & Eric Falcon, 2024. "Effects of nonlinearity on Anderson localization of surface gravity waves," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Shulin Wang & Chengzhi Qin & Weiwei Liu & Bing Wang & Feng Zhou & Han Ye & Lange Zhao & Jianji Dong & Xinliang Zhang & Stefano Longhi & Peixiang Lu, 2022. "High-order dynamic localization and tunable temporal cloaking in ac-electric-field driven synthetic lattices," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Jie Qian & C. H. Meng & J. W. Rao & Z. J. Rao & Zhenghua An & Yongsheng Gui & C. -M. Hu, 2023. "Non-Hermitian control between absorption and transparency in perfect zero-reflection magnonics," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Behnia, S. & Ziaei, J. & Khodavirdizadeh, M. & Hosseinnezhad, P. & Rahimi, F., 2018. "Quantum chaos analysis for characterizing a photonic resonator lattice," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 154-159.
    7. Pengtao Song & Xinhui Ruan & Haijin Ding & Shengyong Li & Ming Chen & Ran Huang & Le-Man Kuang & Qianchuan Zhao & Jaw-Shen Tsai & Hui Jing & Lan Yang & Franco Nori & Dongning Zheng & Yu-xi Liu & Jing , 2024. "Experimental realization of on-chip few-photon control around exceptional points," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    8. Wu, Zhenkun & Yang, Kaibo & Zhang, Yagang & Ren, Xijun & Wen, Feng & Gu, Yuzong & Guo, Lijun, 2022. "Nonlinear conical diffraction in fractional dimensions with a PT-symmetric optical lattice," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    9. Chenwei Lv & Ren Zhang & Zhengzheng Zhai & Qi Zhou, 2022. "Curving the space by non-Hermiticity," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    10. Xiao-Chen Sun & Hao Chen & Hua-Shan Lai & Chu-Hao Xia & Cheng He & Yan-Feng Chen, 2023. "Ideal acoustic quantum spin Hall phase in a multi-topology platform," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Kai Zhang & Zhesen Yang & Chen Fang, 2022. "Universal non-Hermitian skin effect in two and higher dimensions," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    12. Yaowen Hu & Mengjie Yu & Neil Sinclair & Di Zhu & Rebecca Cheng & Cheng Wang & Marko Lončar, 2022. "Mirror-induced reflection in the frequency domain," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Danial Saadatmand & Aliakbar Moradi Marjaneh, 2022. "Scattering of the asymmetric $$\phi ^6$$ ϕ 6 kinks from a $${\mathcal{PT}\mathcal{}}$$ PT -symmetric perturbation: creating multiple kink–antikink pairs from phonons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(9), pages 1-13, September.
    14. Midya Parto & Christian Leefmans & James Williams & Franco Nori & Alireza Marandi, 2023. "Non-Abelian effects in dissipative photonic topological lattices," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Liu, Xiuye & Zeng, Jianhua, 2023. "Matter-wave gap solitons and vortices of dense Bose–Einstein condensates in Moiré optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    16. Li, Li & Yu, Fajun & Zhang, Jiefang, 2024. "Novel robust characteristic for the flat-top bright wave in PT-symmetric higher-order Gross–Pitaevskii equation," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    17. Chen, Hechong & Liu, Zihan & Lian, Shengdi & Quan, Qingying & Malomed, Boris A. & Li, Shuobo & Zhang, Yong & Li, Huagang & Deng, Dongmei, 2024. "Tunable beam splitting via photorefractive nonlinearity and its applications in chiral waveguide induction and vortex generation," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    18. Vakhnenko, Oleksiy O. & Vakhnenko, Vyacheslav O. & Verchenko, Andriy P., 2023. "Dipole–monopole alternative as the precursor of pseudo-excitonic chargeless half-mode in an integrable nonlinear exciton–phonon system on a regular one-dimensional lattice," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    19. Matteo Lucchini & Fabio Medeghini & Yingxuan Wu & Federico Vismarra & Rocío Borrego-Varillas & Aurora Crego & Fabio Frassetto & Luca Poletto & Shunsuke A. Sato & Hannes Hübener & Umberto Giovannini & , 2022. "Controlling Floquet states on ultrashort time scales," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    20. Quan Lin & Wei Yi & Peng Xue, 2023. "Manipulating directional flow in a two-dimensional photonic quantum walk under a synthetic magnetic field," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924000626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.