IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v601y2022i7893d10.1038_s41586-021-04253-0.html
   My bibliography  Save this article

Topological triple phase transition in non-Hermitian Floquet quasicrystals

Author

Listed:
  • Sebastian Weidemann

    (University of Rostock)

  • Mark Kremer

    (University of Rostock)

  • Stefano Longhi

    (Politecnico di Milano
    Instituto de Fisica Interdisciplinar y Sistemas Complejos - Palma de Mallorca)

  • Alexander Szameit

    (University of Rostock)

Abstract

Phase transitions connect different states of matter and are often concomitant with the spontaneous breaking of symmetries. An important category of phase transitions is mobility transitions, among which is the well known Anderson localization1, where increasing the randomness induces a metal–insulator transition. The introduction of topology in condensed-matter physics2–4 lead to the discovery of topological phase transitions and materials as topological insulators5. Phase transitions in the symmetry of non-Hermitian systems describe the transition to on-average conserved energy6 and new topological phases7–9. Bulk conductivity, topology and non-Hermitian symmetry breaking seemingly emerge from different physics and, thus, may appear as separable phenomena. However, in non-Hermitian quasicrystals, such transitions can be mutually interlinked by forming a triple phase transition10. Here we report the experimental observation of a triple phase transition, where changing a single parameter simultaneously gives rise to a localization (metal–insulator), a topological and parity–time symmetry-breaking (energy) phase transition. The physics is manifested in a temporally driven (Floquet) dissipative quasicrystal. We implement our ideas via photonic quantum walks in coupled optical fibre loops11. Our study highlights the intertwinement of topology, symmetry breaking and mobility phase transitions in non-Hermitian quasicrystalline synthetic matter. Our results may be applied in phase-change devices, in which the bulk and edge transport and the energy or particle exchange with the environment can be predicted and controlled.

Suggested Citation

  • Sebastian Weidemann & Mark Kremer & Stefano Longhi & Alexander Szameit, 2022. "Topological triple phase transition in non-Hermitian Floquet quasicrystals," Nature, Nature, vol. 601(7893), pages 354-359, January.
  • Handle: RePEc:nat:nature:v:601:y:2022:i:7893:d:10.1038_s41586-021-04253-0
    DOI: 10.1038/s41586-021-04253-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-04253-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-04253-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao-Chen Sun & Hao Chen & Hua-Shan Lai & Chu-Hao Xia & Cheng He & Yan-Feng Chen, 2023. "Ideal acoustic quantum spin Hall phase in a multi-topology platform," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Matteo Lucchini & Fabio Medeghini & Yingxuan Wu & Federico Vismarra & Rocío Borrego-Varillas & Aurora Crego & Fabio Frassetto & Luca Poletto & Shunsuke A. Sato & Hannes Hübener & Umberto Giovannini & , 2022. "Controlling Floquet states on ultrashort time scales," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Quan Lin & Wei Yi & Peng Xue, 2023. "Manipulating directional flow in a two-dimensional photonic quantum walk under a synthetic magnetic field," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Cao, Xuefei & Wang, Kaile & Yang, Song & Gao, Yuanmei & Cai, Yangjian & Wen, Zengrun, 2024. "Localization and delocalization of light in synthetic photonic lattices with hybrid Bloch-Anderson modulations," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    5. Zhaohui Dong & Xiaoxiong Wu & Yiwen Yang & Penghong Yu & Xianfeng Chen & Luqi Yuan, 2024. "Temporal multilayer structures in discrete physical systems towards arbitrary-dimensional non-Abelian Aharonov-Bohm interferences," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Midya Parto & Christian Leefmans & James Williams & Franco Nori & Alireza Marandi, 2023. "Non-Abelian effects in dissipative photonic topological lattices," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Chengzhi Qin & Han Ye & Shulin Wang & Lange Zhao & Menglin Liu & Yinglan Li & Xinyuan Hu & Chenyu Liu & Bing Wang & Stefano Longhi & Peixiang Lu, 2024. "Observation of discrete-light temporal refraction by moving potentials with broken Galilean invariance," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Shulin Wang & Chengzhi Qin & Weiwei Liu & Bing Wang & Feng Zhou & Han Ye & Lange Zhao & Jianji Dong & Xinliang Zhang & Stefano Longhi & Peixiang Lu, 2022. "High-order dynamic localization and tunable temporal cloaking in ac-electric-field driven synthetic lattices," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Peng Xue & Quan Lin & Kunkun Wang & Lei Xiao & Stefano Longhi & Wei Yi, 2024. "Self acceleration from spectral geometry in dissipative quantum-walk dynamics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:601:y:2022:i:7893:d:10.1038_s41586-021-04253-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.