IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v583y2020i7815d10.1038_s41586-020-2440-4.html
   My bibliography  Save this article

Coherent control of a surface structural phase transition

Author

Listed:
  • Jan Gerrit Horstmann

    (University of Göttingen)

  • Hannes Böckmann

    (University of Göttingen)

  • Bareld Wit

    (University of Göttingen)

  • Felix Kurtz

    (University of Göttingen)

  • Gero Storeck

    (University of Göttingen)

  • Claus Ropers

    (University of Göttingen
    Max Planck Institute for Biophysical Chemistry)

Abstract

Active optical control over matter is desirable in many scientific disciplines, with prominent examples in all-optical magnetic switching1,2, light-induced metastable or exotic phases of solids3–8 and the coherent control of chemical reactions9,10. Typically, these approaches dynamically steer a system towards states or reaction products far from equilibrium. In solids, metal-to-insulator transitions are an important target for optical manipulation, offering ultrafast changes of the electronic4 and lattice11–16 properties. The impact of coherences on the efficiencies and thresholds of such transitions, however, remains a largely open subject. Here, we demonstrate coherent control over a metal–insulator structural phase transition in a quasi-one-dimensional solid-state surface system. A femtosecond double-pulse excitation scheme17–20 is used to switch the system from the insulating to a metastable metallic state, and the corresponding structural changes are monitored by ultrafast low-energy electron diffraction21,22. To govern the transition, we harness vibrational coherence in key structural modes connecting both phases, and observe delay-dependent oscillations in the double-pulse switching efficiency. Mode-selective coherent control of solids and surfaces could open new routes to switching chemical and physical functionalities, enabled by metastable and non-equilibrium states.

Suggested Citation

  • Jan Gerrit Horstmann & Hannes Böckmann & Bareld Wit & Felix Kurtz & Gero Storeck & Claus Ropers, 2020. "Coherent control of a surface structural phase transition," Nature, Nature, vol. 583(7815), pages 232-236, July.
  • Handle: RePEc:nat:nature:v:583:y:2020:i:7815:d:10.1038_s41586-020-2440-4
    DOI: 10.1038/s41586-020-2440-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2440-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2440-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Lucchini & Fabio Medeghini & Yingxuan Wu & Federico Vismarra & Rocío Borrego-Varillas & Aurora Crego & Fabio Frassetto & Luca Poletto & Shunsuke A. Sato & Hannes Hübener & Umberto Giovannini & , 2022. "Controlling Floquet states on ultrashort time scales," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Andrea Ronchi & Paolo Franceschini & Andrea Poli & Pía Homm & Ann Fitzpatrick & Francesco Maccherozzi & Gabriele Ferrini & Francesco Banfi & Sarnjeet S. Dhesi & Mariela Menghini & Michele Fabrizio & J, 2022. "Nanoscale self-organization and metastable non-thermal metallicity in Mott insulators," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Yang Luo & Alberto Martin-Jimenez & Michele Pisarra & Fernando Martin & Manish Garg & Klaus Kern, 2023. "Imaging and controlling coherent phonon wave packets in single graphene nanoribbons," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Chenhang Xu & Cheng Jin & Zijing Chen & Qi Lu & Yun Cheng & Bo Zhang & Fengfeng Qi & Jiajun Chen & Xunqing Yin & Guohua Wang & Dao Xiang & Dong Qian, 2023. "Transient dynamics of the phase transition in VO2 revealed by mega-electron-volt ultrafast electron diffraction," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Qiaomei Liu & Dong Wu & Tianyi Wu & Shanshan Han & Yiran Peng & Zhihong Yuan & Yihan Cheng & Bohan Li & Tianchen Hu & Li Yue & Shuxiang Xu & Ruoxuan Ding & Ming Lu & Rongsheng Li & Sijie Zhang & Baiqi, 2024. "Room-temperature non-volatile optical manipulation of polar order in a charge density wave," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:583:y:2020:i:7815:d:10.1038_s41586-020-2440-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.