IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54403-x.html
   My bibliography  Save this article

Observation of two-dimensional time-reversal broken non-Abelian topological states

Author

Listed:
  • Yuze Hu

    (ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University
    National University of Defense Technology)

  • Mingyu Tong

    (ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University
    Shaoxing Institute of Zhejiang University, Zhejiang University)

  • Tian Jiang

    (National University of Defense Technology)

  • Jian-Hua Jiang

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China)

  • Hongsheng Chen

    (ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University
    Shaoxing Institute of Zhejiang University, Zhejiang University
    The Electromagnetics Academy at Zhejiang university, Zhejiang University
    Jinhua Institute of Zhejiang University, Zhejiang University)

  • Yihao Yang

    (ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University
    The Electromagnetics Academy at Zhejiang university, Zhejiang University
    Jinhua Institute of Zhejiang University, Zhejiang University)

Abstract

Going beyond the conventional theory, non-Abelian band topology reveals the global quantum geometry of multiple Bloch bands and unveils a new paradigm for topological physics. However, to date, experimental studies on non-Abelian topological states beyond one dimension are still restricted to systems with time-reversal ( $${{\mathcal{T}}}$$ T ) symmetry. Here, exploiting a designer gyromagnetic photonic crystal, we find rich $${{\mathcal{T}}}$$ T -broken non-Abelian topological phases and their transitions with an unexpected connection to multigap antichiral edge states. By in-situ tuning the magnetic field in the gyromagnetic photonic crystal, we can create, braid, merge, and split the non-Abelian topological nodes in a unique way. Alongside this process, the multigap antichiral edge states can be tuned versatilely, giving rise to topological edge waveguiding with frequency-dependent directionality. These findings open a new avenue for non-Abelian topological physics and topological photonics.

Suggested Citation

  • Yuze Hu & Mingyu Tong & Tian Jiang & Jian-Hua Jiang & Hongsheng Chen & Yihao Yang, 2024. "Observation of two-dimensional time-reversal broken non-Abelian topological states," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54403-x
    DOI: 10.1038/s41467-024-54403-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54403-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54403-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert-Jan Slager & Adrien Bouhon & F. Nur Ünal, 2024. "Non-Abelian Floquet braiding and anomalous Dirac string phase in periodically driven systems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Fei-Fei Li & Hai-Xiao Wang & Zhan Xiong & Qun Lou & Ping Chen & Rui-Xin Wu & Yin Poo & Jian-Hua Jiang & Sajeev John, 2018. "Topological light-trapping on a dislocation," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    3. Qinghua Guo & Tianshu Jiang & Ruo-Yang Zhang & Lei Zhang & Zhao-Qing Zhang & Biao Yang & Shuang Zhang & C. T. Chan, 2021. "Experimental observation of non-Abelian topological charges and edge states," Nature, Nature, vol. 594(7862), pages 195-200, June.
    4. Tianshu Jiang & Qinghua Guo & Ruo-Yang Zhang & Zhao-Qing Zhang & Biao Yang & C. T. Chan, 2021. "Four-band non-Abelian topological insulator and its experimental realization," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Huahui Qiu & Qicheng Zhang & Tingzhi Liu & Xiying Fan & Fan Zhang & Chunyin Qiu, 2023. "Minimal non-abelian nodal braiding in ideal metamaterials," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Tianyu Li & Haiping Hu, 2023. "Floquet non-Abelian topological insulator and multifold bulk-edge correspondence," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Zheng Wang & Yidong Chong & J. D. Joannopoulos & Marin Soljačić, 2009. "Observation of unidirectional backscattering-immune topological electromagnetic states," Nature, Nature, vol. 461(7265), pages 772-775, October.
    8. Gregor Jotzu & Michael Messer & Rémi Desbuquois & Martin Lebrat & Thomas Uehlinger & Daniel Greif & Tilman Esslinger, 2014. "Experimental realization of the topological Haldane model with ultracold fermions," Nature, Nature, vol. 515(7526), pages 237-240, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang Xi & Bei Yan & Linyun Yang & Yan Meng & Zhen-Xiao Zhu & Jing-Ming Chen & Ziyao Wang & Peiheng Zhou & Perry Ping Shum & Yihao Yang & Hongsheng Chen & Subhaskar Mandal & Gui-Geng Liu & Baile Zhang, 2023. "Topological antichiral surface states in a magnetic Weyl photonic crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Ji-Qian Wang & Zi-Dong Zhang & Si-Yuan Yu & Hao Ge & Kang-Fu Liu & Tao Wu & Xiao-Chen Sun & Le Liu & Hua-Yang Chen & Cheng He & Ming-Hui Lu & Yan-Feng Chen, 2022. "Extended topological valley-locked surface acoustic waves," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Lei Huang & Lu He & Weixuan Zhang & Huizhen Zhang & Dongning Liu & Xue Feng & Fang Liu & Kaiyu Cui & Yidong Huang & Wei Zhang & Xiangdong Zhang, 2024. "Hyperbolic photonic topological insulators," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Jing Yang & Yuanzhen Li & Yumeng Yang & Xinrong Xie & Zijian Zhang & Jiale Yuan & Han Cai & Da-Wei Wang & Fei Gao, 2024. "Realization of all-band-flat photonic lattices," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    5. Xiao-Chen Sun & Hao Chen & Hua-Shan Lai & Chu-Hao Xia & Cheng He & Yan-Feng Chen, 2023. "Ideal acoustic quantum spin Hall phase in a multi-topology platform," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Alexander B. Khanikaev & Andrea Alù, 2024. "Topological photonics: robustness and beyond," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
    7. Robert-Jan Slager & Adrien Bouhon & F. Nur Ünal, 2024. "Non-Abelian Floquet braiding and anomalous Dirac string phase in periodically driven systems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Mehmet Berkay On & Farshid Ashtiani & David Sanchez-Jacome & Daniel Perez-Lopez & S. J. Ben Yoo & Andrea Blanco-Redondo, 2024. "Programmable integrated photonics for topological Hamiltonians," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Ren, Boquan & Kartashov, Yaroslav V. & Wang, Hongguang & Li, Yongdong & Zhang, Yiqi, 2023. "Floquet topological insulators with hybrid edges," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    10. Song Han & Yunda Chua & Yongquan Zeng & Bofeng Zhu & Chongwu Wang & Bo Qiang & Yuhao Jin & Qian Wang & Lianhe Li & Alexander Giles Davies & Edmund Harold Linfield & Yidong Chong & Baile Zhang & Qi Jie, 2023. "Photonic Majorana quantum cascade laser with polarization-winding emission," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Anton Vakulenko & Svetlana Kiriushechkina & Daria Smirnova & Sriram Guddala & Filipp Komissarenko & Andrea Alù & Monica Allen & Jeffery Allen & Alexander B. Khanikaev, 2023. "Adiabatic topological photonic interfaces," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    12. Pawel S. Jung & Georgios G. Pyrialakos & Fan O. Wu & Midya Parto & Mercedeh Khajavikhan & Wieslaw Krolikowski & Demetrios N. Christodoulides, 2022. "Thermal control of the topological edge flow in nonlinear photonic lattices," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    13. Byoung-Uk Sohn & Yue-Xin Huang & Ju Won Choi & George F. R. Chen & Doris K. T. Ng & Shengyuan A. Yang & Dawn T. H. Tan, 2022. "A topological nonlinear parametric amplifier," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Weixuan Zhang & Fengxiao Di & Xingen Zheng & Houjun Sun & Xiangdong Zhang, 2023. "Hyperbolic band topology with non-trivial second Chern numbers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Shuai Li & Ming Gong & Yu-Hang Li & Hua Jiang & X. C. Xie, 2024. "High spin axion insulator," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Danwei Liao & Jingyi Zhang & Shuochen Wang & Zhiwang Zhang & Alberto Cortijo & María A. H. Vozmediano & Francisco Guinea & Ying Cheng & Xiaojun Liu & Johan Christensen, 2024. "Visualizing the topological pentagon states of a giant C540 metamaterial," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    17. Shengjie Wu & Wange Song & Jiacheng Sun & Jian Li & Zhiyuan Lin & Xuanyu Liu & Shining Zhu & Tao Li, 2024. "Approaching the adiabatic infimum of topological pumps on thin-film lithium niobate waveguides," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    18. Sasha S. Yamada & Tianhe Li & Mao Lin & Christopher W. Peterson & Taylor L. Hughes & Gaurav Bahl, 2022. "Bound states at partial dislocation defects in multipole higher-order topological insulators," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    19. Yanan Wang & Hai-Xiao Wang & Li Liang & Weiwei Zhu & Longzhen Fan & Zhi-Kang Lin & Feifei Li & Xiao Zhang & Pi-Gang Luan & Yin Poo & Jian-Hua Jiang & Guang-Yu Guo, 2023. "Hybrid topological photonic crystals," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Midya Parto & Christian Leefmans & James Williams & Franco Nori & Alireza Marandi, 2023. "Non-Abelian effects in dissipative photonic topological lattices," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54403-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.