IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34235-3.html
   My bibliography  Save this article

Self-healable printed magnetic field sensors using alternating magnetic fields

Author

Listed:
  • Rui Xu

    (Institute of Ion Beam Physics and Materials Research)

  • Gilbert Santiago Cañón Bermúdez

    (Institute of Ion Beam Physics and Materials Research)

  • Oleksandr V. Pylypovskyi

    (Institute of Ion Beam Physics and Materials Research
    Kyiv Academic University)

  • Oleksii M. Volkov

    (Institute of Ion Beam Physics and Materials Research)

  • Eduardo Sergio Oliveros Mata

    (Institute of Ion Beam Physics and Materials Research)

  • Yevhen Zabila

    (Institute of Ion Beam Physics and Materials Research)

  • Rico Illing

    (Institute of Ion Beam Physics and Materials Research)

  • Pavlo Makushko

    (Institute of Ion Beam Physics and Materials Research)

  • Pavel Milkin

    (University of Bayreuth)

  • Leonid Ionov

    (University of Bayreuth)

  • Jürgen Fassbender

    (Institute of Ion Beam Physics and Materials Research)

  • Denys Makarov

    (Institute of Ion Beam Physics and Materials Research)

Abstract

We employ alternating magnetic fields (AMF) to drive magnetic fillers actively and guide the formation and self-healing of percolation networks. Relying on AMF, we fabricate printable magnetoresistive sensors revealing an enhancement in sensitivity and figure of merit of more than one and two orders of magnitude relative to previous reports. These sensors display low noise, high resolution, and are readily processable using various printing techniques that can be applied to different substrates. The AMF-mediated self-healing has six characteristics: 100% performance recovery; repeatable healing over multiple cycles; room-temperature operation; healing in seconds; no need for manual reassembly; humidity insensitivity. It is found that the above advantages arise from the AMF-induced attraction of magnetic microparticles and the determinative oscillation that work synergistically to improve the quantity and quality of filler contacts. By virtue of these advantages, the AMF-mediated sensors are used in safety application, medical therapy, and human-machine interfaces for augmented reality.

Suggested Citation

  • Rui Xu & Gilbert Santiago Cañón Bermúdez & Oleksandr V. Pylypovskyi & Oleksii M. Volkov & Eduardo Sergio Oliveros Mata & Yevhen Zabila & Rico Illing & Pavlo Makushko & Pavel Milkin & Leonid Ionov & Jü, 2022. "Self-healable printed magnetic field sensors using alternating magnetic fields," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34235-3
    DOI: 10.1038/s41467-022-34235-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34235-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34235-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Takao Someya & Zhenan Bao & George G. Malliaras, 2016. "The rise of plastic bioelectronics," Nature, Nature, vol. 540(7633), pages 379-385, December.
    2. Yoonseob Kim & Jian Zhu & Bongjun Yeom & Matthew Di Prima & Xianli Su & Jin-Gyu Kim & Seung Jo Yoo & Ctirad Uher & Nicholas A. Kotov, 2013. "Stretchable nanoparticle conductors with self-organized conductive pathways," Nature, Nature, vol. 500(7460), pages 59-63, August.
    3. Mark Burnworth & Liming Tang & Justin R. Kumpfer & Andrew J. Duncan & Frederick L. Beyer & Gina L. Fiore & Stuart J. Rowan & Christoph Weder, 2011. "Optically healable supramolecular polymers," Nature, Nature, vol. 472(7343), pages 334-337, April.
    4. Iqbal, Muhammad Zahid & Campbell, Abraham G., 2021. "From luxury to necessity: Progress of touchless interaction technology," Technology in Society, Elsevier, vol. 67(C).
    5. Bryant Chu & William Burnett & Jong Won Chung & Zhenan Bao, 2017. "Bring on the bodyNET," Nature, Nature, vol. 549(7672), pages 328-330, September.
    6. Haili Qin & Ping Liu & Chuanrui Chen & Huai-Ping Cong & Shu-Hong Yu, 2021. "A multi-responsive healable supercapacitor," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soosang Chae & Won Jin Choi & Lisa Julia Nebel & Chang Hee Cho & Quinn A. Besford & André Knapp & Pavlo Makushko & Yevhen Zabila & Oleksandr Pylypovskyi & Min Woo Jeong & Stanislav Avdoshenko & Oliver, 2024. "Kinetically controlled metal-elastomer nanophases for environmentally resilient stretchable electronics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Jun Li & Corey Carlos & Hao Zhou & Jiajie Sui & Yikai Wang & Zulmari Silva-Pedraza & Fan Yang & Yutao Dong & Ziyi Zhang & Timothy A. Hacker & Bo Liu & Yanchao Mao & Xudong Wang, 2023. "Stretchable piezoelectric biocrystal thin films," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Liang Zou & Huihui Tian & Shouliang Guan & Jianfei Ding & Lei Gao & Jinfen Wang & Ying Fang, 2021. "Self-assembled multifunctional neural probes for precise integration of optogenetics and electrophysiology," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Saikat Mondal & Pratap Tanari & Samrat Roy & Surojit Bhunia & Rituparno Chowdhury & Arun K. Pal & Ayan Datta & Bipul Pal & C. Malla Reddy, 2023. "Autonomous self-healing organic crystals for nonlinear optics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Yao Ni & Jiaqi Liu & Hong Han & Qianbo Yu & Lu Yang & Zhipeng Xu & Chengpeng Jiang & Lu Liu & Wentao Xu, 2024. "Visualized in-sensor computing," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Guang Yao & Xiaoyi Mo & Shanshan Liu & Qian Wang & Maowen Xie & Wenhao Lou & Shiyan Chen & Taisong Pan & Ke Chen & Dezhong Yao & Yuan Lin, 2023. "Snowflake-inspired and blink-driven flexible piezoelectric contact lenses for effective corneal injury repair," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Xi Tian & Qihang Zeng & Selman A. Kurt & Renee R. Li & Dat T. Nguyen & Ze Xiong & Zhipeng Li & Xin Yang & Xiao Xiao & Changsheng Wu & Benjamin C. K. Tee & Denys Nikolayev & Christopher J. Charles & Jo, 2023. "Implant-to-implant wireless networking with metamaterial textiles," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Jing Chen & Yiyang Gao & Lei Shi & Wei Yu & Zongjie Sun & Yifan Zhou & Shuang Liu & Heng Mao & Dongyang Zhang & Tongqing Lu & Quan Chen & Demei Yu & Shujiang Ding, 2022. "Phase-locked constructing dynamic supramolecular ionic conductive elastomers with superior toughness, autonomous self-healing and recyclability," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Dr. Sara Sarwari & Tanvir Ahmed Minar, 2024. "Covid 19: Resilience-Building Strategies for Elevating Customer Satisfaction in the Luxury Hotel Industry," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(4), pages 940-959, April.
    11. Xiao Liu & Jingping Wu & Keke Qiao & Guohan Liu & Zhengjin Wang & Tongqing Lu & Zhigang Suo & Jian Hu, 2022. "Topoarchitected polymer networks expand the space of material properties," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Beibei Shao & Ming-Han Lu & Tai-Chen Wu & Wei-Chen Peng & Tien-Yu Ko & Yung-Chi Hsiao & Jiann-Yeu Chen & Baoquan Sun & Ruiyuan Liu & Ying-Chih Lai, 2024. "Large-area, untethered, metamorphic, and omnidirectionally stretchable multiplexing self-powered triboelectric skins," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Donghwan Ji & Jae Min Park & Myeong Seon Oh & Thanh Loc Nguyen & Hyunsu Shin & Jae Seong Kim & Dukjoon Kim & Ho Seok Park & Jaeyun Kim, 2022. "Superstrong, superstiff, and conductive alginate hydrogels," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Yuzhong Hu & Kaushik Parida & Hao Zhang & Xin Wang & Yongxin Li & Xinran Zhou & Samuel Alexander Morris & Weng Heng Liew & Haomin Wang & Tao Li & Feng Jiang & Mingmin Yang & Marin Alexe & Zehui Du & C, 2022. "Bond engineering of molecular ferroelectrics renders soft and high-performance piezoelectric energy harvesting materials," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Peng Tan & Haifei Wang & Furui Xiao & Xi Lu & Wenhui Shang & Xiaobo Deng & Huafeng Song & Ziyao Xu & Junfeng Cao & Tiansheng Gan & Ben Wang & Xuechang Zhou, 2022. "Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Qi Zhen & Anxiao Zhang & Qiong Huang & Jing Li & Yiming Du & Qi Zhang, 2022. "Overview of the Role of Spatial Factors in Indoor SARS-CoV-2 Transmission: A Space-Based Framework for Assessing the Multi-Route Infection Risk," IJERPH, MDPI, vol. 19(17), pages 1-38, September.
    17. Mahmoud Wagih & Junjie Shi & Menglong Li & Abiodun Komolafe & Thomas Whittaker & Johannes Schneider & Shanmugam Kumar & William Whittow & Steve Beeby, 2024. "Wide-range soft anisotropic thermistor with a direct wireless radio frequency interface," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Huimin He & Hao Li & Aoyang Pu & Wenxiu Li & Kiwon Ban & Lizhi Xu, 2023. "Hybrid assembly of polymeric nanofiber network for robust and electronically conductive hydrogels," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Gun-Hee Lee & Do Hoon Lee & Woojin Jeon & Jihwan Yoon & Kwangguk Ahn & Kum Seok Nam & Min Kim & Jun Kyu Kim & Yong Hoe Koo & Jinmyoung Joo & WooChul Jung & Jaehong Lee & Jaewook Nam & Seongjun Park & , 2023. "Conductance stable and mechanically durable bi-layer EGaIn composite-coated stretchable fiber for 1D bioelectronics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Khan, M. Laeeq & Malik, A. & Ruhi, U. & Al-Busaidi, A., 2022. "Conflicting attitudes: Analyzing social media data to understand the early discourse on COVID-19 passports," Technology in Society, Elsevier, vol. 68(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34235-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.