IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28027-y.html
   My bibliography  Save this article

Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics

Author

Listed:
  • Peng Tan

    (Shenzhen University)

  • Haifei Wang

    (Shenzhen University)

  • Furui Xiao

    (Shenzhen University)

  • Xi Lu

    (Shenzhen University)

  • Wenhui Shang

    (Shenzhen University)

  • Xiaobo Deng

    (Shenzhen University)

  • Huafeng Song

    (Shenzhen University)

  • Ziyao Xu

    (Shenzhen University)

  • Junfeng Cao

    (Shenzhen University)

  • Tiansheng Gan

    (Shenzhen University)

  • Ben Wang

    (Shenzhen University)

  • Xuechang Zhou

    (Shenzhen University)

Abstract

Soft electronics are rising electronic technologies towards applications spanning from healthcare monitoring to medical implants. However, poor adhesion strength and significant mechanical mismatches inevitably cause the interface failure of devices. Herein we report a self-adhesive conductive polymer that possesses low modulus (56.1-401.9 kPa), high stretchability (700%), high interfacial adhesion (lap-shear strength >1.2 MPa), and high conductivity (1-37 S/cm). The self-adhesive conductive polymer is fabricated by doping the poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) composite with a supramolecular solvent (β-cyclodextrin and citric acid). We demonstrated the solution process-based fabrication of self-adhesive conductive polymer-based electrodes for various soft devices, including alternating current electroluminescent devices, electromyography monitoring, and an integrated system for the visualization of electromyography signals during muscle training with an array of alternating current electroluminescent devices. The self-adhesive conductive polymer-based electronics show promising features to further develop wearable and comfortable bioelectronic devices with the physiological electric signals of the human body readable and displayable during daily activities.

Suggested Citation

  • Peng Tan & Haifei Wang & Furui Xiao & Xi Lu & Wenhui Shang & Xiaobo Deng & Huafeng Song & Ziyao Xu & Junfeng Cao & Tiansheng Gan & Ben Wang & Xuechang Zhou, 2022. "Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28027-y
    DOI: 10.1038/s41467-022-28027-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28027-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28027-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Takao Someya & Zhenan Bao & George G. Malliaras, 2016. "The rise of plastic bioelectronics," Nature, Nature, vol. 540(7633), pages 379-385, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Zhang & Qiu-Hong Zhu & Yue-Ru Zhou & Shuang-Long Wang & Jie Fu & Jia-Ying Liu & Guo-Hao Zhang & Lijian Ma & Guohua Tao & Guo-Hong Tao & Ling He, 2023. "Hydrogen-bonding and π-π interaction promoted solution-processable covalent organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Li & Corey Carlos & Hao Zhou & Jiajie Sui & Yikai Wang & Zulmari Silva-Pedraza & Fan Yang & Yutao Dong & Ziyi Zhang & Timothy A. Hacker & Bo Liu & Yanchao Mao & Xudong Wang, 2023. "Stretchable piezoelectric biocrystal thin films," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Liang Zou & Huihui Tian & Shouliang Guan & Jianfei Ding & Lei Gao & Jinfen Wang & Ying Fang, 2021. "Self-assembled multifunctional neural probes for precise integration of optogenetics and electrophysiology," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Yao Ni & Jiaqi Liu & Hong Han & Qianbo Yu & Lu Yang & Zhipeng Xu & Chengpeng Jiang & Lu Liu & Wentao Xu, 2024. "Visualized in-sensor computing," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Guang Yao & Xiaoyi Mo & Shanshan Liu & Qian Wang & Maowen Xie & Wenhao Lou & Shiyan Chen & Taisong Pan & Ke Chen & Dezhong Yao & Yuan Lin, 2023. "Snowflake-inspired and blink-driven flexible piezoelectric contact lenses for effective corneal injury repair," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Xiao Liu & Jingping Wu & Keke Qiao & Guohan Liu & Zhengjin Wang & Tongqing Lu & Zhigang Suo & Jian Hu, 2022. "Topoarchitected polymer networks expand the space of material properties," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Donghwan Ji & Jae Min Park & Myeong Seon Oh & Thanh Loc Nguyen & Hyunsu Shin & Jae Seong Kim & Dukjoon Kim & Ho Seok Park & Jaeyun Kim, 2022. "Superstrong, superstiff, and conductive alginate hydrogels," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Yuzhong Hu & Kaushik Parida & Hao Zhang & Xin Wang & Yongxin Li & Xinran Zhou & Samuel Alexander Morris & Weng Heng Liew & Haomin Wang & Tao Li & Feng Jiang & Mingmin Yang & Marin Alexe & Zehui Du & C, 2022. "Bond engineering of molecular ferroelectrics renders soft and high-performance piezoelectric energy harvesting materials," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Sakeena Saifi & Xiao Xiao & Simin Cheng & Haotian Guo & Jinsheng Zhang & Peter Müller-Buschbaum & Guangmin Zhou & Xiaomin Xu & Hui-Ming Cheng, 2024. "An ultraflexible energy harvesting-storage system for wearable applications," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Junhee Hong & Youngjin Seol & Seunghyun Lee & Janghyeok Yoon & Jiho Lee & Ki-Su Park & Ji-Wan Ha, 2024. "Prediction of Cognitive Impairment Using Sleep Lifelog Data and LSTM Model," Mathematics, MDPI, vol. 12(20), pages 1-18, October.
    10. Rui Xu & Gilbert Santiago Cañón Bermúdez & Oleksandr V. Pylypovskyi & Oleksii M. Volkov & Eduardo Sergio Oliveros Mata & Yevhen Zabila & Rico Illing & Pavlo Makushko & Pavel Milkin & Leonid Ionov & Jü, 2022. "Self-healable printed magnetic field sensors using alternating magnetic fields," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Lukas M. Bongartz & Richard Kantelberg & Tommy Meier & Raik Hoffmann & Christian Matthus & Anton Weissbach & Matteo Cucchi & Hans Kleemann & Karl Leo, 2024. "Bistable organic electrochemical transistors: enthalpy vs. entropy," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Yuchen Qiu & Bo Zhang & Junchuan Yang & Hanfei Gao & Shuang Li & Le Wang & Penghua Wu & Yewang Su & Yan Zhao & Jiangang Feng & Lei Jiang & Yuchen Wu, 2021. "Wafer-scale integration of stretchable semiconducting polymer microstructures via capillary gradient," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28027-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.