IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47223-6.html
   My bibliography  Save this article

Kinetically controlled metal-elastomer nanophases for environmentally resilient stretchable electronics

Author

Listed:
  • Soosang Chae

    (Institute of Physical Chemistry and Polymer Physics
    Korea University of Technology and Education)

  • Won Jin Choi

    (Lawrence Livermore National Laboratory)

  • Lisa Julia Nebel

    (Technische Universität Dresden)

  • Chang Hee Cho

    (Gachon University)

  • Quinn A. Besford

    (Institute of Physical Chemistry and Polymer Physics)

  • André Knapp

    (Institute of Physical Chemistry and Polymer Physics)

  • Pavlo Makushko

    (Institute of Ion Beam Physics and Materials Research)

  • Yevhen Zabila

    (Institute of Ion Beam Physics and Materials Research)

  • Oleksandr Pylypovskyi

    (Institute of Ion Beam Physics and Materials Research
    Kyiv Academic University)

  • Min Woo Jeong

    (Kyung Hee University)

  • Stanislav Avdoshenko

    (Institute for Solid State Research)

  • Oliver Sander

    (Technische Universität Dresden)

  • Denys Makarov

    (Institute of Ion Beam Physics and Materials Research)

  • Yoon Jang Chung

    (Korea University)

  • Andreas Fery

    (Institute of Physical Chemistry and Polymer Physics
    Technische Universität Dresden)

  • Jin Young Oh

    (Kyung Hee University)

  • Tae Il Lee

    (Gachon University)

Abstract

Nanophase mixtures, leveraging the complementary strengths of each component, are vital for composites to overcome limitations posed by single elemental materials. Among these, metal-elastomer nanophases are particularly important, holding various practical applications for stretchable electronics. However, the methodology and understanding of nanophase mixing metals and elastomers are limited due to difficulties in blending caused by thermodynamic incompatibility. Here, we present a controlled method using kinetics to mix metal atoms with elastomeric chains on the nanoscale. We find that the chain migration flux and metal deposition rate are key factors, allowing the formation of reticular nanophases when kinetically in-phase. Moreover, we observe spontaneous structural evolution, resulting in gyrified structures akin to the human brain. The hybridized gyrified reticular nanophases exhibit strain-invariant metallic electrical conductivity up to 156% areal strain, unparalleled durability in organic solvents and aqueous environments with pH 2–13, and high mechanical robustness, a prerequisite for environmentally resilient devices.

Suggested Citation

  • Soosang Chae & Won Jin Choi & Lisa Julia Nebel & Chang Hee Cho & Quinn A. Besford & André Knapp & Pavlo Makushko & Yevhen Zabila & Oleksandr Pylypovskyi & Min Woo Jeong & Stanislav Avdoshenko & Oliver, 2024. "Kinetically controlled metal-elastomer nanophases for environmentally resilient stretchable electronics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47223-6
    DOI: 10.1038/s41467-024-47223-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47223-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47223-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yoonseob Kim & Jian Zhu & Bongjun Yeom & Matthew Di Prima & Xianli Su & Jin-Gyu Kim & Seung Jo Yoo & Ctirad Uher & Nicholas A. Kotov, 2013. "Stretchable nanoparticle conductors with self-organized conductive pathways," Nature, Nature, vol. 500(7460), pages 59-63, August.
    2. Bhavana Deore & Kathleen L. Sampson & Thomas Lacelle & Nathan Kredentser & Jacques Lefebvre & Luke Steven Young & Joseph Hyland & Rony E. Amaya & Jamshid Tanha & Patrick R. L. Malenfant & Hendrick W. , 2021. "Direct printing of functional 3D objects using polymerization-induced phase separation," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Ying Jiang & Shaobo Ji & Jing Sun & Jianping Huang & Yuanheng Li & Guijin Zou & Teddy Salim & Changxian Wang & Wenlong Li & Haoran Jin & Jie Xu & Sihong Wang & Ting Lei & Xuzhou Yan & Wendy Yen Xian P, 2023. "A universal interface for plug-and-play assembly of stretchable devices," Nature, Nature, vol. 614(7948), pages 456-462, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yangshuang Bian & Mingliang Zhu & Chengyu Wang & Kai Liu & Wenkang Shi & Zhiheng Zhu & Mingcong Qin & Fan Zhang & Zhiyuan Zhao & Hanlin Wang & Yunqi Liu & Yunlong Guo, 2024. "A detachable interface for stable low-voltage stretchable transistor arrays and high-resolution X-ray imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Soo Young Cho & Dong Hae Ho & Yoon Young Choi & Soomook Lim & Sungjoo Lee & Ji Won Suk & Sae Byeok Jo & Jeong Ho Cho, 2022. "A general fruit acid chelation route for eco-friendly and ambient 3D printing of metals," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Shuangshuang Wan & Kepeng Wang & Peihong Huang & Xian Guo & Wurui Liu & Yaocheng Li & Jingjing Zhang & Zhiyang Li & Jiacheng Song & Wenjing Yang & Xianzheng Zhang & Xianguang Ding & David Tai Leong & , 2024. "Mechanoelectronic stimulation of autologous extracellular vesicle biosynthesis implant for gut microbiota modulation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Falon C. Kalutantirige & Jinlong He & Lehan Yao & Stephen Cotty & Shan Zhou & John W. Smith & Emad Tajkhorshid & Charles M. Schroeder & Jeffrey S. Moore & Hyosung An & Xiao Su & Ying Li & Qian Chen, 2024. "Beyond nothingness in the formation and functional relevance of voids in polymer films," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Beibei Shao & Ming-Han Lu & Tai-Chen Wu & Wei-Chen Peng & Tien-Yu Ko & Yung-Chi Hsiao & Jiann-Yeu Chen & Baoquan Sun & Ruiyuan Liu & Ying-Chih Lai, 2024. "Large-area, untethered, metamorphic, and omnidirectionally stretchable multiplexing self-powered triboelectric skins," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Liqing Ai & Weikang Lin & Chunyan Cao & Pengyu Li & Xuejiao Wang & Dong Lv & Xin Li & Zhengbao Yang & Xi Yao, 2023. "Tough soldering for stretchable electronics by small-molecule modulated interfacial assemblies," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Jie Cao & Xusheng Liu & Jie Qiu & Zhifei Yue & Yang Li & Qian Xu & Yan Chen & Jiewen Chen & Hongfei Cheng & Guozhong Xing & Enming Song & Ming Wang & Qi Liu & Ming Liu, 2024. "Anti-friction gold-based stretchable electronics enabled by interfacial diffusion-induced cohesion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Valentin A. Bobrin & Yin Yao & Xiaobing Shi & Yuan Xiu & Jin Zhang & Nathaniel Corrigan & Cyrille Boyer, 2022. "Nano- to macro-scale control of 3D printed materials via polymerization induced microphase separation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Huimin He & Hao Li & Aoyang Pu & Wenxiu Li & Kiwon Ban & Lizhi Xu, 2023. "Hybrid assembly of polymeric nanofiber network for robust and electronically conductive hydrogels," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Rui Xu & Gilbert Santiago Cañón Bermúdez & Oleksandr V. Pylypovskyi & Oleksii M. Volkov & Eduardo Sergio Oliveros Mata & Yevhen Zabila & Rico Illing & Pavlo Makushko & Pavel Milkin & Leonid Ionov & Jü, 2022. "Self-healable printed magnetic field sensors using alternating magnetic fields," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Gun-Hee Lee & Do Hoon Lee & Woojin Jeon & Jihwan Yoon & Kwangguk Ahn & Kum Seok Nam & Min Kim & Jun Kyu Kim & Yong Hoe Koo & Jinmyoung Joo & WooChul Jung & Jaehong Lee & Jaewook Nam & Seongjun Park & , 2023. "Conductance stable and mechanically durable bi-layer EGaIn composite-coated stretchable fiber for 1D bioelectronics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47223-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.