IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34089-9.html
   My bibliography  Save this article

Competing instabilities reveal how to rationally design and control active crosslinked gels

Author

Listed:
  • Bibi Najma

    (Brandeis University)

  • Minu Varghese

    (Brandeis University
    University of Michigan)

  • Lev Tsidilkovski

    (Brandeis University)

  • Linnea Lemma

    (Brandeis University
    University of California at Santa Barbara
    Princeton University)

  • Aparna Baskaran

    (Brandeis University)

  • Guillaume Duclos

    (Brandeis University)

Abstract

How active stresses generated by molecular motors set the large-scale mechanics of the cell cytoskeleton remains poorly understood. Here, we combine experiments and theory to demonstrate how the emergent properties of a biomimetic active crosslinked gel depend on the properties of its microscopic constituents. We show that an extensile nematic elastomer exhibits two distinct activity-driven instabilities, spontaneously bending in-plane or buckling out-of-plane depending on its composition. Molecular motors play a dual antagonistic role, fluidizing or stiffening the gel depending on the ATP concentration. We demonstrate how active and elastic stresses are set by each component, providing estimates for the active gel theory parameters. Finally, activity and elasticity were manipulated in situ with light-activable motor proteins, controlling the direction of the instability optically. These results highlight how cytoskeletal stresses regulate the self-organization of living matter and set the foundations for the rational design and optogenetic control of active materials.

Suggested Citation

  • Bibi Najma & Minu Varghese & Lev Tsidilkovski & Linnea Lemma & Aparna Baskaran & Guillaume Duclos, 2022. "Competing instabilities reveal how to rationally design and control active crosslinked gels," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34089-9
    DOI: 10.1038/s41467-022-34089-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34089-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34089-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alessandro Mongera & Payam Rowghanian & Hannah J. Gustafson & Elijah Shelton & David A. Kealhofer & Emmet K. Carn & Friedhelm Serwane & Adam A. Lucio & James Giammona & Otger Campàs, 2018. "A fluid-to-solid jamming transition underlies vertebrate body axis elongation," Nature, Nature, vol. 561(7723), pages 401-405, September.
    2. Tyler D. Ross & Heun Jin Lee & Zijie Qu & Rachel A. Banks & Rob Phillips & Matt Thomson, 2019. "Controlling organization and forces in active matter through optically defined boundaries," Nature, Nature, vol. 572(7768), pages 224-229, August.
    3. Tim Sanchez & Daniel T. N. Chen & Stephen J. DeCamp & Michael Heymann & Zvonimir Dogic, 2012. "Spontaneous motion in hierarchically assembled active matter," Nature, Nature, vol. 491(7424), pages 431-434, November.
    4. Koen Visscher & Mark J. Schnitzer & Steven M. Block, 1999. "Single kinesin molecules studied with a molecular force clamp," Nature, Nature, vol. 400(6740), pages 184-189, July.
    5. Adam C. Martin & Matthias Kaschube & Eric F. Wieschaus, 2009. "Pulsed contractions of an actin–myosin network drive apical constriction," Nature, Nature, vol. 457(7228), pages 495-499, January.
    6. Song Liu & Suraj Shankar & M. Cristina Marchetti & Yilin Wu, 2021. "Viscoelastic control of spatiotemporal order in bacterial active matter," Nature, Nature, vol. 590(7844), pages 80-84, February.
    7. Ian Linsmeier & Shiladitya Banerjee & Patrick W. Oakes & Wonyeong Jung & Taeyoon Kim & Michael P. Murrell, 2016. "Disordered actomyosin networks are sufficient to produce cooperative and telescopic contractility," Nature Communications, Nature, vol. 7(1), pages 1-9, November.
    8. Antoine Bricard & Jean-Baptiste Caussin & Nicolas Desreumaux & Olivier Dauchot & Denis Bartolo, 2013. "Emergence of macroscopic directed motion in populations of motile colloids," Nature, Nature, vol. 503(7474), pages 95-98, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan Shen & Ingo Dierking, 2022. "Electrically tunable collective motion of dissipative solitons in chiral nematic films," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Bo Zhang & Andreas Glatz & Igor S. Aranson & Alexey Snezhko, 2023. "Spontaneous shock waves in pulse-stimulated flocks of Quincke rollers," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Teagan E. Bate & Megan E. Varney & Ezra H. Taylor & Joshua H. Dickie & Chih-Che Chueh & Michael M. Norton & Kun-Ta Wu, 2022. "Self-mixing in microtubule-kinesin active fluid from nonuniform to uniform distribution of activity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Nabila Founounou & Reza Farhadifar & Giovanna M. Collu & Ursula Weber & Michael J. Shelley & Marek Mlodzik, 2021. "Tissue fluidity mediated by adherens junction dynamics promotes planar cell polarity-driven ommatidial rotation," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    5. Maxime Hubert & Stéphane Perrard & Nicolas Vandewalle & Matthieu Labousse, 2022. "Overload wave-memory induces amnesia of a self-propelled particle," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Pragya Arora & Souvik Sadhukhan & Saroj Kumar Nandi & Dapeng Bi & A. K. Sood & Rajesh Ganapathy, 2024. "A shape-driven reentrant jamming transition in confluent monolayers of synthetic cell-mimics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Maximilian Kurjahn & Leila Abbaspour & Franziska Papenfuß & Philip Bittihn & Ramin Golestanian & Benoît Mahault & Stefan Karpitschka, 2024. "Collective self-caging of active filaments in virtual confinement," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Sijia Zhou & Peng Li & Jiaying Liu & Juan Liao & Hao Li & Lin Chen & Zhihua Li & Qiongyu Guo & Karine Belguise & Bin Yi & Xiaobo Wang, 2022. "Two Rac1 pools integrate the direction and coordination of collective cell migration," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    9. Federico Pratissoli & Andreagiovanni Reina & Yuri Kaszubowski Lopes & Carlo Pinciroli & Genki Miyauchi & Lorenzo Sabattini & Roderich Groß, 2023. "Coherent movement of error-prone individuals through mechanical coupling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Lv, Wangyong & Wang, Huiqi & Lin, Lifeng & Wang, Fei & Zhong, Suchuan, 2015. "Transport properties of elastically coupled fractional Brownian motors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 149-161.
    11. David T. Limmer & Chloe Y. Gao & Anthony R. Poggioli, 2021. "A large deviation theory perspective on nanoscale transport phenomena," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(7), pages 1-16, July.
    12. Wei Ming Lim & Wei-Xiang Chew & Arianna Esposito Verza & Marion Pesenti & Andrea Musacchio & Thomas Surrey, 2024. "Regulation of minimal spindle midzone organization by mitotic kinases," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Salgado-García, R., 2022. "Active particles in reactive disordered media: How does adsorption affect diffusion?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    14. Chung Wing Chan & Daihui Wu & Kaiyao Qiao & Kin Long Fong & Zhiyu Yang & Yilong Han & Rui Zhang, 2024. "Chiral active particles are sensitive reporters to environmental geometry," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Antonio Lamura & Adriano Tiribocchi, 2021. "Shearing Effects on the Phase Coarsening of Binary Mixtures Using the Active Model B," Mathematics, MDPI, vol. 9(23), pages 1-13, November.
    16. López-Alamilla, N.J. & Challis, K.J. & Deaker, A.G. & Jack, M.W., 2023. "The effect of futile chemical cycles on chemical-to-mechanical energy conversion in interacting motor protein systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    17. Woochul Nam & Bogdan I Epureanu, 2016. "Effects of Obstacles on the Dynamics of Kinesins, Including Velocity and Run Length, Predicted by a Model of Two Dimensional Motion," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-18, January.
    18. Su, Yan, 2024. "A mesoscale non-dimensional lattice Boltzmann model for self-sustained structures of swimming microbial suspensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    19. Japinder Nijjer & Changhao Li & Qiuting Zhang & Haoran Lu & Sulin Zhang & Jing Yan, 2021. "Mechanical forces drive a reorientation cascade leading to biofilm self-patterning," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    20. Alberto Dinelli & Jérémy O’Byrne & Agnese Curatolo & Yongfeng Zhao & Peter Sollich & Julien Tailleur, 2023. "Non-reciprocity across scales in active mixtures," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34089-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.