IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v615y2023ics0378437123001632.html
   My bibliography  Save this article

The effect of futile chemical cycles on chemical-to-mechanical energy conversion in interacting motor protein systems

Author

Listed:
  • López-Alamilla, N.J.
  • Challis, K.J.
  • Deaker, A.G.
  • Jack, M.W.

Abstract

We consider the non-equilibrium steady-state conversion of chemical to mechanical energy in motor protein systems with protein–protein interactions. Our approach combines a two-dimensional chemomechanical coupling model with a simple exclusion process. The chemomechanical model explicitly includes both chemical and mechanical degrees of freedom to describe not only coupled chemomechanical transitions but also uncoupled transitions, such as futile chemical cycles, that lead to energy loss. The simple exclusion process describes strong repulsive protein–protein interactions in the mechanical degree of freedom and these interactions have implications for the chemical degree of freedom via the chemomechanical coupling. Using the combined chemomechanical exclusion model, we determine the efficiency of energy conversion as a function of motor density and chemical driving force. We show that as motor density increases, mechanical motion is blocked, losses due to futile chemical cycles increase, and the efficiency of chemical-to-mechanical energy conversion is reduced.

Suggested Citation

  • López-Alamilla, N.J. & Challis, K.J. & Deaker, A.G. & Jack, M.W., 2023. "The effect of futile chemical cycles on chemical-to-mechanical energy conversion in interacting motor protein systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
  • Handle: RePEc:eee:phsmap:v:615:y:2023:i:c:s0378437123001632
    DOI: 10.1016/j.physa.2023.128608
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123001632
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128608?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rossi, Lucas W. & Radtke, Paul K. & Goldman, Carla, 2014. "Long-range cargo transport on crowded microtubules: The motor jamming mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 319-329.
    2. Hiroyasu Itoh & Akira Takahashi & Kengo Adachi & Hiroyuki Noji & Ryohei Yasuda & Masasuke Yoshida & Kazuhiko Kinosita, 2004. "Mechanically driven ATP synthesis by F1-ATPase," Nature, Nature, vol. 427(6973), pages 465-468, January.
    3. Ding, Zhong-Jun & Yu, Shao-Long & Zhu, Kongjin & Ding, Jian-Xun & Chen, Bokui & Shi, Qin & Lu, Xiao-Shan & Jiang, Rui & Wang, Bing-Hong, 2018. "Analytical and simulation studies of 2D asymmetric simple exclusion process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1700-1714.
    4. Lipowsky, Reinhard & Chai, Yan & Klumpp, Stefan & Liepelt, Steffen & Müller, Melanie J.I., 2006. "Molecular motor traffic: From biological nanomachines to macroscopic transport," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 372(1), pages 34-51.
    5. Tim Sanchez & Daniel T. N. Chen & Stephen J. DeCamp & Michael Heymann & Zvonimir Dogic, 2012. "Spontaneous motion in hierarchically assembled active matter," Nature, Nature, vol. 491(7424), pages 431-434, November.
    6. Yannick Rondelez & Guillaume Tresset & Takako Nakashima & Yasuyuki Kato-Yamada & Hiroyuki Fujita & Shoji Takeuchi & Hiroyuki Noji, 2005. "Highly coupled ATP synthesis by F1-ATPase single molecules," Nature, Nature, vol. 433(7027), pages 773-777, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nishkantha Arulkumaran & Mervyn Singer & Stefan Howorka & Jonathan R. Burns, 2023. "Creating complex protocells and prototissues using simple DNA building blocks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Maximilian Kurjahn & Leila Abbaspour & Franziska Papenfuß & Philip Bittihn & Ramin Golestanian & Benoît Mahault & Stefan Karpitschka, 2024. "Collective self-caging of active filaments in virtual confinement," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Chou, Y.C. & Hsiao, Yi-Feng & To, Kiwing, 2015. "Dynamic model of the force driving kinesin to move along microtubule—Simulation with a model system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 66-73.
    4. Wei Ming Lim & Wei-Xiang Chew & Arianna Esposito Verza & Marion Pesenti & Andrea Musacchio & Thomas Surrey, 2024. "Regulation of minimal spindle midzone organization by mitotic kinases," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Bibi Najma & Minu Varghese & Lev Tsidilkovski & Linnea Lemma & Aparna Baskaran & Guillaume Duclos, 2022. "Competing instabilities reveal how to rationally design and control active crosslinked gels," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Salgado-García, R., 2022. "Active particles in reactive disordered media: How does adsorption affect diffusion?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    7. Tom Brandstätter & David B. Brückner & Yu Long Han & Ricard Alert & Ming Guo & Chase P. Broedersz, 2023. "Curvature induces active velocity waves in rotating spherical tissues," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Mallikarjun, Rahul & Pal, Arnab, 2023. "Chiral run-and-tumble walker: Transport and optimizing search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    9. Antonio Lamura & Adriano Tiribocchi, 2021. "Shearing Effects on the Phase Coarsening of Binary Mixtures Using the Active Model B," Mathematics, MDPI, vol. 9(23), pages 1-13, November.
    10. A.V. Kuznetsov & A.A. Avramenko & D.G. Blinov, 2008. "Numerical modeling of molecular-motor-assisted transport of adenoviral vectors in a spherical cell," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 11(3), pages 215-222.
    11. Ding, Zhongjun & Chen, Bokui & Zhang, Lele & Jiang, Rui & Wu, Yao & Ding, Jianxun, 2019. "Segment travel time route guidance strategy in advanced traveler information systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    12. Bo Zhang & Andreas Glatz & Igor S. Aranson & Alexey Snezhko, 2023. "Spontaneous shock waves in pulse-stimulated flocks of Quincke rollers," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Jerôme Hardoüin & Claire Doré & Justine Laurent & Teresa Lopez-Leon & Jordi Ignés-Mullol & Francesc Sagués, 2022. "Active boundary layers in confined active nematics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Eva Bertosin & Christopher M. Maffeo & Thomas Drexler & Maximilian N. Honemann & Aleksei Aksimentiev & Hendrik Dietz, 2021. "A nanoscale reciprocating rotary mechanism with coordinated mobility control," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    15. Su, Yan, 2024. "A mesoscale non-dimensional lattice Boltzmann model for self-sustained structures of swimming microbial suspensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    16. Teagan E. Bate & Megan E. Varney & Ezra H. Taylor & Joshua H. Dickie & Chih-Che Chueh & Michael M. Norton & Kun-Ta Wu, 2022. "Self-mixing in microtubule-kinesin active fluid from nonuniform to uniform distribution of activity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. A. Tiribocchi & M. Durve & M. Lauricella & A. Montessori & D. Marenduzzo & S. Succi, 2023. "The crucial role of adhesion in the transmigration of active droplets through interstitial orifices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Goswami, Koushik, 2019. "Work fluctuation relations for a dragged Brownian particle in active bath," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 223-233.
    19. Alexander Ziepke & Ivan Maryshev & Igor S. Aranson & Erwin Frey, 2022. "Multi-scale organization in communicating active matter," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Yuan Shen & Ingo Dierking, 2022. "Electrically tunable collective motion of dissipative solitons in chiral nematic films," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:615:y:2023:i:c:s0378437123001632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.