IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v491y2012i7424d10.1038_nature11591.html
   My bibliography  Save this article

Spontaneous motion in hierarchically assembled active matter

Author

Listed:
  • Tim Sanchez

    (Martin Fisher School of Physics, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA)

  • Daniel T. N. Chen

    (Martin Fisher School of Physics, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA)

  • Stephen J. DeCamp

    (Martin Fisher School of Physics, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA)

  • Michael Heymann

    (Martin Fisher School of Physics, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA
    Graduate Program in Biophysics and Structural Biology, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA)

  • Zvonimir Dogic

    (Martin Fisher School of Physics, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA)

Abstract

Active materials are hierarchically assembled, starting from extensile microtubule bundles, to form emulsions with unexpected collective biomimetic properties such as autonomous motility.

Suggested Citation

  • Tim Sanchez & Daniel T. N. Chen & Stephen J. DeCamp & Michael Heymann & Zvonimir Dogic, 2012. "Spontaneous motion in hierarchically assembled active matter," Nature, Nature, vol. 491(7424), pages 431-434, November.
  • Handle: RePEc:nat:nature:v:491:y:2012:i:7424:d:10.1038_nature11591
    DOI: 10.1038/nature11591
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature11591
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature11591?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jerôme Hardoüin & Claire Doré & Justine Laurent & Teresa Lopez-Leon & Jordi Ignés-Mullol & Francesc Sagués, 2022. "Active boundary layers in confined active nematics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Teagan E. Bate & Megan E. Varney & Ezra H. Taylor & Joshua H. Dickie & Chih-Che Chueh & Michael M. Norton & Kun-Ta Wu, 2022. "Self-mixing in microtubule-kinesin active fluid from nonuniform to uniform distribution of activity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Goswami, Koushik, 2019. "Work fluctuation relations for a dragged Brownian particle in active bath," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 223-233.
    4. Yuan Shen & Ingo Dierking, 2022. "Electrically tunable collective motion of dissipative solitons in chiral nematic films," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. A. Tiribocchi & M. Durve & M. Lauricella & A. Montessori & D. Marenduzzo & S. Succi, 2023. "The crucial role of adhesion in the transmigration of active droplets through interstitial orifices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Bo Zhang & Andreas Glatz & Igor S. Aranson & Alexey Snezhko, 2023. "Spontaneous shock waves in pulse-stimulated flocks of Quincke rollers," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Tom Brandstätter & David B. Brückner & Yu Long Han & Ricard Alert & Ming Guo & Chase P. Broedersz, 2023. "Curvature induces active velocity waves in rotating spherical tissues," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Mallikarjun, Rahul & Pal, Arnab, 2023. "Chiral run-and-tumble walker: Transport and optimizing search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    9. Nishkantha Arulkumaran & Mervyn Singer & Stefan Howorka & Jonathan R. Burns, 2023. "Creating complex protocells and prototissues using simple DNA building blocks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Bibi Najma & Minu Varghese & Lev Tsidilkovski & Linnea Lemma & Aparna Baskaran & Guillaume Duclos, 2022. "Competing instabilities reveal how to rationally design and control active crosslinked gels," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Antonio Lamura & Adriano Tiribocchi, 2021. "Shearing Effects on the Phase Coarsening of Binary Mixtures Using the Active Model B," Mathematics, MDPI, vol. 9(23), pages 1-13, November.
    12. Salgado-García, R., 2022. "Active particles in reactive disordered media: How does adsorption affect diffusion?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    13. López-Alamilla, N.J. & Challis, K.J. & Deaker, A.G. & Jack, M.W., 2023. "The effect of futile chemical cycles on chemical-to-mechanical energy conversion in interacting motor protein systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    14. Alexander Ziepke & Ivan Maryshev & Igor S. Aranson & Erwin Frey, 2022. "Multi-scale organization in communicating active matter," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Su, Yan, 2024. "A mesoscale non-dimensional lattice Boltzmann model for self-sustained structures of swimming microbial suspensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:491:y:2012:i:7424:d:10.1038_nature11591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.