Author
Listed:
- Song Liu
(The Chinese University of Hong Kong)
- Suraj Shankar
(Syracuse University
University of California
Harvard University)
- M. Cristina Marchetti
(University of California)
- Yilin Wu
(The Chinese University of Hong Kong)
Abstract
Active matter consists of units that generate mechanical work by consuming energy1. Examples include living systems (such as assemblies of bacteria2–5 and biological tissues6,7), biopolymers driven by molecular motors8–11 and suspensions of synthetic self-propelled particles12–14. A central goal is to understand and control the self-organization of active assemblies in space and time. Most active systems exhibit either spatial order mediated by interactions that coordinate the spatial structure and the motion of active agents12,14,15 or the temporal synchronization of individual oscillatory dynamics2. The simultaneous control of spatial and temporal organization is more challenging and generally requires complex interactions, such as reaction–diffusion hierarchies16 or genetically engineered cellular circuits2. Here we report a simple technique to simultaneously control the spatial and temporal self-organization of bacterial active matter. We confine dense active suspensions of Escherichia coli cells and manipulate a single macroscopic parameter—namely, the viscoelasticity of the suspending fluid— through the addition of purified genomic DNA. This reveals self-driven spatial and temporal organization in the form of a millimetre-scale rotating vortex with periodically oscillating global chirality of tunable frequency, reminiscent of a torsional pendulum. By combining experiments with an active-matter model, we explain this behaviour in terms of the interplay between active forcing and viscoelastic stress relaxation. Our findings provide insight into the influence of bacterial motile behaviour in complex fluids, which may be of interest in health- and ecology-related research, and demonstrate experimentally that rheological properties can be harnessed to control active-matter flows17,18. We envisage that our millimetre-scale, tunable, self-oscillating bacterial vortex may be coupled to actuation systems to act a ‘clock generator’ capable of providing timing signals for rhythmic locomotion of soft robots and for programmed microfluidic pumping19, for example, by triggering the action of a shift register in soft-robotic logic devices20.
Suggested Citation
Song Liu & Suraj Shankar & M. Cristina Marchetti & Yilin Wu, 2021.
"Viscoelastic control of spatiotemporal order in bacterial active matter,"
Nature, Nature, vol. 590(7844), pages 80-84, February.
Handle:
RePEc:nat:nature:v:590:y:2021:i:7844:d:10.1038_s41586-020-03168-6
DOI: 10.1038/s41586-020-03168-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Japinder Nijjer & Changhao Li & Qiuting Zhang & Haoran Lu & Sulin Zhang & Jing Yan, 2021.
"Mechanical forces drive a reorientation cascade leading to biofilm self-patterning,"
Nature Communications, Nature, vol. 12(1), pages 1-9, December.
- Bibi Najma & Minu Varghese & Lev Tsidilkovski & Linnea Lemma & Aparna Baskaran & Guillaume Duclos, 2022.
"Competing instabilities reveal how to rationally design and control active crosslinked gels,"
Nature Communications, Nature, vol. 13(1), pages 1-10, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:590:y:2021:i:7844:d:10.1038_s41586-020-03168-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.