Overload wave-memory induces amnesia of a self-propelled particle
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-31736-z
Download full text from publisher
References listed on IDEAS
- U. Erdmann & W. Ebeling & L. Schimansky-Geier & F. Schweitzer, 2000. "Brownian particles far from equilibrium," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 15(1), pages 105-113, May.
- Utsab Khadka & Viktor Holubec & Haw Yang & Frank Cichos, 2018. "Active particles bound by information flows," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
- Antoine Bricard & Jean-Baptiste Caussin & Nicolas Desreumaux & Olivier Dauchot & Denis Bartolo, 2013. "Emergence of macroscopic directed motion in populations of motile colloids," Nature, Nature, vol. 503(7474), pages 95-98, November.
- Stéphane Perrard & Matthieu Labousse & Marc Miskin & Emmanuel Fort & Yves Couder, 2014. "Self-organization into quantized eigenstates of a classical wave-driven particle," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
- Y. Couder & S. Protière & E. Fort & A. Boudaoud, 2005. "Walking and orbiting droplets," Nature, Nature, vol. 437(7056), pages 208-208, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rahman, Aminur & Blackmore, Denis, 2016. "Neimark-Sacker bifurcations and evidence of chaos in a discrete dynamical model of walkers," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 339-349.
- Cristóvão S. Dias & Manish Trivedi & Giovanni Volpe & Nuno A. M. Araújo & Giorgio Volpe, 2023. "Environmental memory boosts group formation of clueless individuals," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Andrea Cavagna & Antonio Culla & Xiao Feng & Irene Giardina & Tomas S. Grigera & Willow Kion-Crosby & Stefania Melillo & Giulia Pisegna & Lorena Postiglione & Pablo Villegas, 2022. "Marginal speed confinement resolves the conflict between correlation and control in collective behaviour," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Federico Pratissoli & Andreagiovanni Reina & Yuri Kaszubowski Lopes & Carlo Pinciroli & Genki Miyauchi & Lorenzo Sabattini & Roderich Groß, 2023. "Coherent movement of error-prone individuals through mechanical coupling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- David T. Limmer & Chloe Y. Gao & Anthony R. Poggioli, 2021. "A large deviation theory perspective on nanoscale transport phenomena," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(7), pages 1-16, July.
- Chetverikov, A.P. & Sergeev, K.S. & del Rio, Ezequiel, 2019. "Noise influence on dissipative solitons in a chain of active particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 147-155.
- Chung Wing Chan & Daihui Wu & Kaiyao Qiao & Kin Long Fong & Zhiyu Yang & Yilong Han & Rui Zhang, 2024. "Chiral active particles are sensitive reporters to environmental geometry," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Guan, Lin & Fang, Yuwen & Li, Kongzhai & Zeng, Chunhua & Yang, Fengzao, 2018. "Transport properties of active Brownian particles in a modified energy-depot model driven by correlated noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 716-728.
- Xiangzun Wang & Pin-Chuan Chen & Klaus Kroy & Viktor Holubec & Frank Cichos, 2023. "Spontaneous vortex formation by microswimmers with retarded attractions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Alberto Dinelli & Jérémy O’Byrne & Agnese Curatolo & Yongfeng Zhao & Peter Sollich & Julien Tailleur, 2023. "Non-reciprocity across scales in active mixtures," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Gaurav Gardi & Steven Ceron & Wendong Wang & Kirstin Petersen & Metin Sitti, 2022. "Microrobot collectives with reconfigurable morphologies, behaviors, and functions," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Benjamin Gallois & Raphaël Candelier, 2021. "FastTrack: An open-source software for tracking varying numbers of deformable objects," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-19, February.
- Yuan Shen & Ingo Dierking, 2022. "Electrically tunable collective motion of dissipative solitons in chiral nematic films," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Demaerel, Thibaut & De Roeck, Wojciech & Maes, Christian, 2020. "Producing suprathermal tails in the stationary velocity distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 552(C).
- Liang Li & Simon F Nørrelykke & Edward C Cox, 2008. "Persistent Cell Motion in the Absence of External Signals: A Search Strategy for Eukaryotic Cells," PLOS ONE, Public Library of Science, vol. 3(5), pages 1-11, May.
- Chepizhko, Oleksandr & Kulinskii, Vladimir, 2014. "The hydrodynamic description for the system of self-propelled particles: Ideal Viscek fluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 493-502.
- Medha Rath & Satyam Srivastava & Eric Carmona & Sarangua Battumur & Shakti Arumugam & Paul Albertus & Taylor Woehl, 2025. "Transient colloidal crystals fueled by electrochemical reaction products," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
- Noman Hanif Barbhuiya & A. G. Yodh & Chandan K. Mishra, 2023. "Direction-dependent dynamics of colloidal particle pairs and the Stokes-Einstein relation in quasi-two-dimensional fluids," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
- Baral, Dipesh & Lu, Annie C. & Bishop, Alan R. & Rasmussen, Kim Ø. & Voulgarakis, Nikolaos K., 2024. "Stochastically drifted Brownian motion for self-propelled particles," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
- Bibi Najma & Minu Varghese & Lev Tsidilkovski & Linnea Lemma & Aparna Baskaran & Guillaume Duclos, 2022. "Competing instabilities reveal how to rationally design and control active crosslinked gels," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31736-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.