IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31736-z.html
   My bibliography  Save this article

Overload wave-memory induces amnesia of a self-propelled particle

Author

Listed:
  • Maxime Hubert

    (Interdisciplinary center for nanostructured films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg)

  • Stéphane Perrard

    (ESPCI Paris et PSL Université)

  • Nicolas Vandewalle

    (GRASP, UR CESAM, Université de Liège)

  • Matthieu Labousse

    (ESPCI Paris et PSL Université)

Abstract

Information storage is a key element of autonomous, out-of-equilibrium dynamics, especially for biological and synthetic active matter. In synthetic active matter however, the implementation of internal memory in self-propelled systems is often absent, limiting our understanding of memory-driven dynamics. Recently, a system comprised of a droplet generating its guiding wavefield appeared as a prime candidate for such investigations. Indeed, the wavefield, propelling the droplet, encodes information about the droplet trajectory and the amount of information can be controlled by a single scalar experimental parameter. In this work, we show numerically and experimentally that the accumulation of information in the wavefield induces the loss of time correlations, where the dynamics can then be described by a memory-less process. We rationalize the resulting statistical behavior by defining an effective temperature for the particle dynamics where the wavefield acts as a thermostat of large dimensions, and by evidencing a minimization principle of the generated wavefield.

Suggested Citation

  • Maxime Hubert & Stéphane Perrard & Nicolas Vandewalle & Matthieu Labousse, 2022. "Overload wave-memory induces amnesia of a self-propelled particle," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31736-z
    DOI: 10.1038/s41467-022-31736-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31736-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31736-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. U. Erdmann & W. Ebeling & L. Schimansky-Geier & F. Schweitzer, 2000. "Brownian particles far from equilibrium," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 15(1), pages 105-113, May.
    2. Utsab Khadka & Viktor Holubec & Haw Yang & Frank Cichos, 2018. "Active particles bound by information flows," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    3. Antoine Bricard & Jean-Baptiste Caussin & Nicolas Desreumaux & Olivier Dauchot & Denis Bartolo, 2013. "Emergence of macroscopic directed motion in populations of motile colloids," Nature, Nature, vol. 503(7474), pages 95-98, November.
    4. Stéphane Perrard & Matthieu Labousse & Marc Miskin & Emmanuel Fort & Yves Couder, 2014. "Self-organization into quantized eigenstates of a classical wave-driven particle," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
    5. Y. Couder & S. Protière & E. Fort & A. Boudaoud, 2005. "Walking and orbiting droplets," Nature, Nature, vol. 437(7056), pages 208-208, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahman, Aminur & Blackmore, Denis, 2016. "Neimark-Sacker bifurcations and evidence of chaos in a discrete dynamical model of walkers," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 339-349.
    2. Cristóvão S. Dias & Manish Trivedi & Giovanni Volpe & Nuno A. M. Araújo & Giorgio Volpe, 2023. "Environmental memory boosts group formation of clueless individuals," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Andrea Cavagna & Antonio Culla & Xiao Feng & Irene Giardina & Tomas S. Grigera & Willow Kion-Crosby & Stefania Melillo & Giulia Pisegna & Lorena Postiglione & Pablo Villegas, 2022. "Marginal speed confinement resolves the conflict between correlation and control in collective behaviour," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Chepizhko, Oleksandr & Kulinskii, Vladimir, 2014. "The hydrodynamic description for the system of self-propelled particles: Ideal Viscek fluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 493-502.
    5. Federico Pratissoli & Andreagiovanni Reina & Yuri Kaszubowski Lopes & Carlo Pinciroli & Genki Miyauchi & Lorenzo Sabattini & Roderich Groß, 2023. "Coherent movement of error-prone individuals through mechanical coupling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Noman Hanif Barbhuiya & A. G. Yodh & Chandan K. Mishra, 2023. "Direction-dependent dynamics of colloidal particle pairs and the Stokes-Einstein relation in quasi-two-dimensional fluids," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. David T. Limmer & Chloe Y. Gao & Anthony R. Poggioli, 2021. "A large deviation theory perspective on nanoscale transport phenomena," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(7), pages 1-16, July.
    8. Chetverikov, A.P. & Sergeev, K.S. & del Rio, Ezequiel, 2019. "Noise influence on dissipative solitons in a chain of active particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 147-155.
    9. Bibi Najma & Minu Varghese & Lev Tsidilkovski & Linnea Lemma & Aparna Baskaran & Guillaume Duclos, 2022. "Competing instabilities reveal how to rationally design and control active crosslinked gels," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Helena Massana-Cid & Claudio Maggi & Giacomo Frangipane & Roberto Di Leonardo, 2022. "Rectification and confinement of photokinetic bacteria in an optical feedback loop," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Matthew S. E. Peterson & Aparna Baskaran & Michael F. Hagan, 2021. "Vesicle shape transformations driven by confined active filaments," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    12. Chung Wing Chan & Daihui Wu & Kaiyao Qiao & Kin Long Fong & Zhiyu Yang & Yilong Han & Rui Zhang, 2024. "Chiral active particles are sensitive reporters to environmental geometry," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Guan, Lin & Fang, Yuwen & Li, Kongzhai & Zeng, Chunhua & Yang, Fengzao, 2018. "Transport properties of active Brownian particles in a modified energy-depot model driven by correlated noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 716-728.
    14. Valani, Rahil N. & López, Álvaro G., 2024. "Quantum-like behavior of an active particle in a double-well potential," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    15. Bo Zhang & Andreas Glatz & Igor S. Aranson & Alexey Snezhko, 2023. "Spontaneous shock waves in pulse-stimulated flocks of Quincke rollers," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Man Hu & Feng Wang & Li Chen & Peng Huo & Yuqi Li & Xi Gu & Kai Leong Chong & Daosheng Deng, 2022. "Near-infrared-laser-navigated dancing bubble within water via a thermally conductive interface," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Mendola, Naveen Kumar & Thounaojam, Umeshkanta Singh, 2024. "Collective rotation-flips and explosive synchronization in a ring of limit cycle oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    18. Stephen Williams & Raphaël Jeanneret & Idan Tuval & Marco Polin, 2022. "Confinement-induced accumulation and de-mixing of microscopic active-passive mixtures," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    19. Xiangzun Wang & Pin-Chuan Chen & Klaus Kroy & Viktor Holubec & Frank Cichos, 2023. "Spontaneous vortex formation by microswimmers with retarded attractions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Solenn Riedel & Ludwig A. Hoffmann & Luca Giomi & Daniela J. Kraft, 2024. "Designing highly efficient interlocking interactions in anisotropic active particles," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31736-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.